cylindrical phase
Recently Published Documents


TOTAL DOCUMENTS

73
(FIVE YEARS 14)

H-INDEX

13
(FIVE YEARS 2)

Author(s):  
Jamshid I. Buranov ◽  
Jumanazar Kh. Khusanov

Abstract. The stability problem of a system of differential equations with a right-hand side periodic with respect to the phase (angular) coordinates is considered. It is convenient to consider such systems in a cylindrical phase space which allows a more complete qualitative analysis of their solutions. The authors propose to investigate the dynamic properties of solutions of a non-autonomous system with angular coordinates by constructing its topological dynamics in such a space. The corresponding quasi-invariance property of the positive limit set of the system’s bounded solution is derived. The stability problem with respect to part of the variables is investigated basing of the vector Lyapunov function with the comparison principle and also basing on the constructed topological dynamics. Theorem like a quasi-invariance principle is proved on the basis of a vector Lyapunov function for the class of systems under consideration. Two theorems on the asymptotic stability of the zero solution with respect to part of the variables (to be more precise, non-angular coordinates) are proved. The novelty of these theorems lies in the requirement only for the stability of the comparison system, in contrast to the classical results with the condition of the corresponding asymptotic stability property. The results obtained in this paper make it possible to expand the usage of the direct Lyapunov method in solving a number of applied problems.


2021 ◽  
Vol 13 (1) ◽  
pp. 1-11
Author(s):  
Feng-Ming Jin ◽  
Yang Wu ◽  
Jun Wang ◽  
Chun Chen ◽  
Chan-Juan Liu ◽  
...  

In this article, we will consider the problems of controlling multidimensional phase systems described by nonlinear differential equations. These mathematical models describe processes in complex systems consisting of many turbines and generators and are used for their analysis. The relevance of these models lies in the fact that they allow simulating different pre-emergency, emergency, and post-emergency situations. The controllability of the model under consideration is determined by studying the global asymptotic stability of dynamical systems in cylindrical phase systems. The results obtained are demonstrated by a numerical example.


Author(s):  
Duc-Chinh pham

We consider the n -component transversely isotropic unidirectional elastic composites, the longitudinal axis of which is parallel to those of the transversely isotropic components as well as the generators of the cylindrical phase boundaries between them. From the minimum energy and complementary energy principles, with appropriate constant strain and piece-wise constant stress trial fields, optimization and iteration techniques, a set of bounds for the macroscopic (effective) longitudinal elastic constants of the composites (including the simple lower arithmetic average estimate for longitudinal Young modulus E eff  ≥  E V ) are constructed. Numerical examples are provided to illustrate the obtained results.


2020 ◽  
Vol 248 (4) ◽  
pp. 457-466
Author(s):  
S. S. Mamonov ◽  
A. O. Kharlamova

Author(s):  
V.Sh. Roitenberg ◽  

In this paper, autonomous differential equations of the second order are considered, the right-hand sides of which are polynomials of degree n with respect to the first derivative with periodic continuously differentiable coefficients, and the corresponding vector fields on the cylindrical phase space. The free term and the leading coefficient of the polynomial is assumed not to vanish, which is equivalent to the absence of singular points of the vector field. Rough equations are considered for which the topological structure of the phase portrait does not change under small perturbations in the class of equations under consideration. It is proved that the equation is rough if and only if all its closed trajectories are hyperbolic. Rough equations form an open and everywhere dense set in the space of the equations under consideration. It is shown that for n > 4 an equation of degree n can have arbitrarily many limit cycles. For n = 4, the possible number of limit cycles is determined in the case when the free term and the leading coefficient of the equation have opposite signs.


Sign in / Sign up

Export Citation Format

Share Document