carbonyl powder
Recently Published Documents


TOTAL DOCUMENTS

5
(FIVE YEARS 4)

H-INDEX

1
(FIVE YEARS 1)

2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Faisal Rehman ◽  
Rafiq Asghar ◽  
Kashif Iqbal ◽  
Ali Aman ◽  
Agha Ali Nawaz

Purpose In surface mount assembly (SMA) process, small components are subjected to high temperature variations, which result in components’ deformation and cracking. Because of this phenomenon, cracks are formed in the body of carbonyl powder ceramic inductor (CPCI) in the preheat and cooling stages of the reflow oven. These cracks become the main cause of board failure in the ageing process. The purpose of this paper is to ascertain the thermal stress, thermal expansion of carbonyl iron ceramics and its effects on crack commencement and proliferation in the preheat stage of reflow oven. Moreover, this paper also categorized and suggested important parameters of reflow profile that could be used to eliminate these thermal shock failures. Design/methodology/approach In this paper, two different reflow profiles were studied that evaluate the thermal shock of CPCI during varying ΔT at the preheat zone of the reflow oven. In the first profile, the change in temperature ΔT at preheat zone was set to 3.26°C/s, which has resulted in a number of device failures because of migration of micro cracks through the CPCI. In the second profile, this ΔT at preheat stage is minimized to 2.06°C/s that eliminated the thermal stresses; hence, the failure rates were significantly reduced. Findings TMPC0618H series lead (Pb)-free CPCI is selected for this study and its thermal expansion and thermal shock are observed in the reflow process. It is inferred from the results that high ΔT at preheat zone generates cracks in the carbonyl powder-type ceramics that cause device failure in the board ageing process. Comparing materials, carbonyl powder ceramic components are less resistant to thermal shock and a lower rate of temperature change is desirable. Originality/value The proposed study presents an experimental analysis for mitigating the thermal shock defects. The realization of the proposed approach is validated with experimental data from the printed circuit boards manufacturing process.


Metals ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 321 ◽  
Author(s):  
Rui Ma ◽  
Kaiping Yu ◽  
Litao Liu ◽  
Heng Jiang ◽  
Shulong Ye ◽  
...  

In this paper, we demonstrate that trace amounts of P addition can activate the sintering of carbonyl powder and influence the magnetic properties of the sintered materials. Fe-x P (x = 0, 0.6, 0.8, 1.0, 1.2, 1.4, and 1.6 wt.%) samples were fabricated by doping carbonyl powder with different amounts of Fe3P. They were sintered at 1000 °C in argon for 2 h. The sintering of the Fe-0 wt.% P sample was interrupted by the ferrite-austenite transformation at 912 °C due to the low diffusion rate of the austenite. The addition of P can stabilize the ferrite, and suppress the ferrite-austenite transformation. Therefore, all the P-containing samples shrank continuously throughout the whole sintering process, which showed improved sintering densities compared to the P-free sample. However, the sintering density did not increase monotonously with increasing P content. The Fe-1.4 wt.% P and Fe-1.6wt.% P samples easily got oxidized during sintering, and the densification process was thus influenced by the P-containing oxide particles. As a result, the Fe-1.2 wt.% P sample exhibited the highest sintering density (7.664 g/cm3) and the best magnetic properties (coercive force 172 A/m).


Sign in / Sign up

Export Citation Format

Share Document