bounded regular domain
Recently Published Documents


TOTAL DOCUMENTS

7
(FIVE YEARS 2)

H-INDEX

2
(FIVE YEARS 0)

2021 ◽  
Vol 41 (1) ◽  
pp. 5-23
Author(s):  
Rachid Bentifour ◽  
Sofiane El-Hadi Miri

In this paper we deal with the following problem \[\begin{cases}-\sum\limits_{i=1}^{N}\left[ \left( a+b\int\limits_{\, \Omega }\left\vert \partial _{i}u\right\vert ^{p_{i}}dx\right) \partial _{i}\left( \left\vert \partial _{i}u\right\vert ^{p_{i}-2}\partial _{i}u\right) \right]=\frac{f(x)}{u^{\gamma }}\pm g(x)u^{q-1} & in\ \Omega, \\ u\geq 0 & in\ \Omega, \\ u=0 & on\ \partial \Omega, \end{cases}\] where \(\Omega\) is a bounded regular domain in \(\mathbb{R}^{N}\). We will assume without loss of generality that \(1\leq p_{1}\leq p_{2}\leq \ldots\leq p_{N}\) and that \(f\) and \(g\) are non-negative functions belonging to a suitable Lebesgue space \(L^{m}(\Omega)\), \(1\lt q\lt \overline{p}^{\ast}\), \(a\gt 0\), \(b\gt 0\) and \(0\lt \gamma \lt 1.\)



2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Bian-Xia Yang ◽  
Shanshan Gu ◽  
Guowei Dai

<p style='text-indent:20px;'>This paper is concerned with the existence and multiplicity of constant sign solutions for the following fully nonlinear equation</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \begin{equation*} \left\{ \begin{array}{l} -\mathcal{M}_\mathcal{C}^{\pm}(D^2u) = \mu f(u) \ \ \ \ \text{in} \ \ \Omega,\\ u = 0 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \text{on}\ \partial\Omega, \end{array} \right. \end{equation*} $\end{document} </tex-math> </disp-formula></p><p style='text-indent:20px;'>where <inline-formula><tex-math id="M3">\begin{document}$ \Omega\subset\mathbb{R}^N $\end{document}</tex-math></inline-formula> is a bounded regular domain with <inline-formula><tex-math id="M4">\begin{document}$ N\geq3 $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M5">\begin{document}$ \mathcal{M}_\mathcal{C}^{\pm} $\end{document}</tex-math></inline-formula> are general Hamilton-Jacobi-Bellman operators, <inline-formula><tex-math id="M6">\begin{document}$ \mu $\end{document}</tex-math></inline-formula> is a real parameter. By using bifurcation theory, we determine the range of parameter <inline-formula><tex-math id="M7">\begin{document}$ \mu $\end{document}</tex-math></inline-formula> of the above problem which has one or multiple constant sign solutions according to the behaviors of <inline-formula><tex-math id="M8">\begin{document}$ f $\end{document}</tex-math></inline-formula> at <inline-formula><tex-math id="M9">\begin{document}$ 0 $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M10">\begin{document}$ \infty $\end{document}</tex-math></inline-formula>, and whether <inline-formula><tex-math id="M11">\begin{document}$ f $\end{document}</tex-math></inline-formula> satisfies the signum condition <inline-formula><tex-math id="M12">\begin{document}$ f(s)s&gt;0 $\end{document}</tex-math></inline-formula> for <inline-formula><tex-math id="M13">\begin{document}$ s\neq0 $\end{document}</tex-math></inline-formula>.</p>



2019 ◽  
Vol 150 (2) ◽  
pp. 1053-1069
Author(s):  
Giovany M. Figueiredo ◽  
Marcelo F. Furtado ◽  
João Pablo P. da Silva

AbstractWe prove existence and multiplicity of solutions for the problem$$\left\{ {\matrix{ {\Delta ^2u + \lambda \Delta u = \vert u \vert ^{2*-2u},{\rm in }\Omega ,} \hfill \hfill \hfill \hfill \cr {u,-\Delta u > 0,\quad {\rm in}\;\Omega ,\quad u = \Delta u = 0,\quad {\rm on}\;\partial \Omega ,} \cr } } \right.$$where$\Omega \subset {\open R}^N$,$N \ges 5$, is a bounded regular domain,$\lambda >0$and$2^*=2N/(N-4)$is the critical Sobolev exponent for the embedding of$W^{2,2}(\Omega )$into the Lebesgue spaces.



2019 ◽  
Vol 150 (2) ◽  
pp. 841-870
Author(s):  
Alireza Khatib ◽  
Liliane A. Maia

AbstractWe consider the Null Mass nonlinear field equation (𝒫)$$\left\{ {\matrix{ {-\Delta u = f(u){\rm in}\;\;\Omega } \hfill \hfill \hfill \hfill \cr {u > 0} \hfill \hfill \hfill \hfill \hfill \hfill \hfill \hfill \hfill \hfill \hfill \hfill \hfill \hfill \hfill \hfill \hfill \hfill \cr {u \vert_{\partial \Omega } = 0} \cr } } \right.$$ where ${\open R}^N \setminus \Omega $ is a bounded regular domain. The existence of a bound state solution is established in situations where this problem does not have a ground state.



2015 ◽  
Vol 17 (03) ◽  
pp. 1450033 ◽  
Author(s):  
B. Abdellaoui ◽  
K. Biroud ◽  
J. Davila ◽  
F. Mahmoudi

Let Ω ⊂ ℝNbe a bounded regular domain of ℝNand 1 < p < ∞. The paper is divided into two main parts. In the first part, we prove the following improved Hardy inequality for convex domains. Namely, for all [Formula: see text], we have [Formula: see text] where d(x) = dist (x, ∂Ω), [Formula: see text] and C is a positive constant depending only on p, N and Ω. The optimality of the exponent of the logarithmic term is also proved. In the second part, we consider the following class of elliptic problem [Formula: see text] where 0 < q ≤ 2* - 1. We investigate the question of existence and nonexistence of positive solutions depending on the range of the exponent q.



2012 ◽  
Vol 12 (4) ◽  
Author(s):  
David Ruiz

AbstractThe classical Poincaré inequality establishes that for any bounded regular domain Ω ⊂ ℝIn this paper we show that C can be taken independently of Ω when Ω is in a certain class of domains. Our result generalizes previous results in this direction.



Author(s):  
Boumediene Abdellaoui ◽  
Ireneo Peral ◽  
Ana Primo

This paper deals with the influence of the Hardy potential in a semilinear heat equation. Precisely, we consider the problemwhere Ω⊂ℝN, N≥3, is a bounded regular domain such that 0∈Ω, p>1, and u0≥0, f≥0 are in a suitable class of functions.There is a great difference between this result and the heat equation (λ=0); indeed, if λ>0, there exists a critical exponent p+(λ) such that for p≥p+(λ) there is no solution for any non-trivial initial datum.The Cauchy problem, Ω=ℝN, is also analysed for 1<p<+(λ). We find the same phenomenon about the critical power p+(λ) as above. Moreover, there exists a Fujita-type exponent, F(λ), in the sense that, independently of the initial datum, for 1<p<F(λ), any solution blows up in a finite time. Moreover, F(λ)>1+2/N, which is the Fujita exponent for the heat equation (λ=0).



Sign in / Sign up

Export Citation Format

Share Document