sediment fabric
Recently Published Documents


TOTAL DOCUMENTS

20
(FIVE YEARS 2)

H-INDEX

8
(FIVE YEARS 0)

2020 ◽  
Vol 17 (8) ◽  
pp. 2381-2396
Author(s):  
Nathaniel Kemnitz ◽  
William M. Berelson ◽  
Douglas E. Hammond ◽  
Laura Morine ◽  
Maria Figueroa ◽  
...  

Abstract. The Southern California Bight is adjacent to one of the world's largest urban areas, Los Angeles. As a consequence, anthropogenic impacts could disrupt local marine ecosystems due to municipal and industrial waste discharge, pollution, flood control measures, and global warming. Santa Monica Basin (SMB), due to its unique setting in a low-oxygen and high-sedimentation environment, can provide an excellent sedimentary paleorecord of these anthropogenic changes. This study examined 10 sediment cores, collected from different parts of the SMB between spring and summer 2016, and compared them to existing cores in order to document changes in sedimentary dynamics during the last 250 years, with an emphasis on the last 40 years. The 210Pb-based mass accumulation rates (MARs) for the deepest and lowest oxygen-containing parts of the SMB basin (900–910 m) have been remarkably consistent during the past century, averaging 17.1±0.6 mg cm−2 yr−1. At slightly shallower sites (870–900 m), accumulation rates showed more variation but yield the same accumulation rate, 17.9±1.9 mg cm−2 yr−1. Excess 210Pb sedimentation rates were consistent with rates established using bomb test 137Cs profiles. We also examined 14C profiles from two cores collected in the deepest part of the SMB, where fine laminations are present up to about 450 yr BP. These data indicate that the MAR was slower prior to ∼1900 CE (rates obtained were 9 and 12 mg cm−2 yr−1). The δ13Corg profiles show a relatively constant value where laminations are present, suggesting that the change in sediment accumulation rate is not accompanied by a change in organic carbon sources to the basin. The increase in sedimentation rate towards the Recent occurs at about the time previous studies predicted an increase in siltation and the demise of a shelly shelf benthic fauna on the SMB shelf. X-radiographs show finely laminated sediments in the deepest part of the basin only, with centimeter-scale layering of sediments or no layering whatsoever in shallower parts of the SMB basin. The absence of finely laminated sediments in cores MUC 10 (893 m) and MUC 3 (777 m) suggests that the rate at which anoxia is spreading has not increased appreciably since cores were last analyzed in the 1980s. Based on core top data collected during the past half century, sedimentary dynamics within SMB have changed minimally during the last 40 years. Specifically, mass accumulation rates, laminated sediment fabric, extent of bioturbation and % Corg have not changed. The only parameter that appeared to have changed in the last 450 years was the MAR, with an apparent > 50 % increase occurring between ∼1850 CE and the early 1900s. The post-1900 CE constancy of sedimentation through a period of massive urbanization in Los Angeles is surprising.


2019 ◽  
Author(s):  
Nathaniel Kemnitz ◽  
William Berelson ◽  
Douglas Hammond ◽  
Laura Morine ◽  
Maria Figueroa ◽  
...  

Abstract. The Southern California Bight is adjacent to one of the world's largest urban areas, Los Angeles. As a consequence, anthropogenic impacts could disrupt local marine ecosystems due to municipal and industrial waste, pollution, and flood control measures. Superimposed on the growth of an urban metropolis, the impact of climate change has been felt most strongly over the past 50 years in terms of rising pCO2 and warming. Santa Monica Basin (SMB), due to its unique setting in low oxygen and high sedimentation environment, has provided an excellent sedimentary paleorecord of these anthropogenic changes. This study examined ten sediment cores, collected from different parts of the SMB between spring and summer 2016, and compared them to existing cores in order to document changes in sedimentary dynamics during the last 250 years, with an emphasis on the last 40 years. Mass accumulation rates (MAR) for the deepest and lowest oxygen-containing parts of the SMB basin (900–910 m) established using 210Pb have been remarkably consistent during the past century, averaging 17.5 ± 2.1 mg/cm2-yr. At slightly shallower sites (870–900 m), accumulation rates showed more variation, butyield the same accumulation rate, 17.5 ± 5.5 mg/cm2-yr. Excess 210Pb sedimentation rates were consistent with rates established using bomb-test 137Cs profiles. However, 14C profiles from cores collected in the deepest part of the SMB, where fine laminations are present up to 250 years B.P., indicate that MAR was slower prior to ~ 1900 CE (rates obtained = 9 and 12 mg/cm2-yr). δ13Corg profiles show a relatively constant value down core suggesting that the change in sediment accumulation rate is not accompanied by a change in organic carbon sources to the basin. The increase in sedimentation rate towards the recent occurs at about the time previous studiespredicted an increase in siltation and the demise of a shelly shelf benthic fauna on the SMB shelf. X-radiographs show finely laminated sediments in the deepest part of the basin only, with cm-scale layering of sediments or no layering whatsoever in shallower parts of the SMB basin. The absence of finely laminated sediments in MUC 10 (893 m) and MUC 3 (777 m) suggest that the rate at which anoxia is spreading, has not increased appreciably since cores were last analyzed in the 1980s. Based on core top data collected during the past half century, sedimentary dynamics within SMB has changed minimally during last 40 years. Specifically, mass accumulation rates, laminated sediment fabric, extent of bioturbation, and % Corg have not changed. The only parameter that appeared to have changed in the last 250 years was the MAR with an apparent step-wise increase occurring between ~ 1850–1900 CE, yet the post-1900 CE constancy of sedimentation through a period of massive urbanization is surprising.


2018 ◽  
Vol 123 (7) ◽  
pp. 5495-5514 ◽  
Author(s):  
Junbong Jang ◽  
Shuang C. Cao ◽  
Laura A. Stern ◽  
Jongwon Jung ◽  
William F. Waite

2006 ◽  
Vol 143 (3) ◽  
pp. 343-365 ◽  
Author(s):  
A. QUIQUEREZ ◽  
G. DROMART

The purpose of this paper is to document the influence of depositional environments on shallow-water, low-relief clinoforms from the description of five ancient carbonate platforms: the Neoproterozoic (Namibia), Middle Jurassic (France), Lower Cretaceous (France), Upper Cretaceous (Oman) and Miocene (Turkey). These examples have been investigated on the basis of field observations. The clinoforms are described with reference to geometric and compositional attributes: declivity, shape, height, sedimentary structures, sediment fabric and components. The results show great variability in stratal geometry, declivity and facies distribution: (1) depositional profiles vary from exponential, to sigmoidal, to oblique; (2) maximal slope angles range from 3 to 25°, most of them being grouped between 10 and 18°; (3) facies differentiation identified from lateral facies successions along beds, and vertical facies successions through beds, is pronounced to subtle. This study documents linkages between depositional environments and clinoform attributes. Proximal/shallow clinoforms display round-edged exponential profiles. Sediment deposition has resulted from unidirectional currents in the upper convex section, and storm-generated oscillatory currents in the lower concave part. The sediment fabric changes gradually along this type of clinoform. There is little vertical facies differentiation through these clinobeds which have formed from a continuous amalgamation of deposits. By contrast, distal clinoforms (shelf break, distally steepened ramp settings) yield a much broader spectrum of profiles and are generally shorter and steeper. Sedimentary structures in gravel-sized deposits of the upper slope indicate pure traction by unidirectional currents. Conversely, marks of oscillatory flows (undular, wavy top bounding surfaces of clinobeds) are common in the lower slope. Intercalation of massive, fine-grained deposits suggests offshore transport of carbonate mud by suspension. Each distal clinobed represents a single flow event. Accordingly, facies differentiation is weak laterally but may be pronounced through the clinobeds. Our study suggests that low-relief forms of proximal/shallow environments, which contain coarse-grained and photo-independently produced debris, record hydrodynamic equilibrium profiles, whereas the higher-relief forms of this setting rather reflect a high differential production rate of carbonate sediment with water depth. The carbonate sediment of the distal clinobeds mainly derives from skeletal production by oligophotic and photo-independent biota of the middle shelf/ramp and upper portion of the clinoforms. The contribution by in situ skeletal biota only becomes significant on the lower slope, indicating that the distal, submerged slopes of carbonate platforms are not organically but hydrodynamically generated. Our compilation shows that the slope angles of shallow marine, low-relief clinoforms do not simply correlate to the sediment grain size and fabric, in contrast to what has been documented for the high, linear slope profiles. This difference stems from the depositional settings, namely the involved transport mechanisms. Low-relief clinoform accretion seems to be dominantly influenced by wave-induced sediment transport, in contrast to linear flanks of high-relief clinoforms that build to the angle of repose, and for which gravity is the primary transport process.


2004 ◽  
Vol 141 (2) ◽  
pp. 173-193 ◽  
Author(s):  
DAVID BOND ◽  
PAUL B. WIGNALL ◽  
GRZEGORZ RACKI

The intensity and extent of anoxia during the two Kellwasser anoxic events has been investigated in a range of European localities using a multidisciplinary approach (pyrite framboid assay, gamma-ray spectrometry and sediment fabric analysis). The results reveal that the development of the Lower Kellwasser Horizon in the early Late rhenana Zone (Frasnian Stage) in German type sections does not always coincide with anoxic events elsewhere in Europe and, in some locations, seafloor oxygenation improves during this interval. Thus, this anoxic event is not universally developed. In contrast, the Upper Kellwasser Horizon, developed in the Late linguiformis Zone (Frasnian Stage) in Germany correlates with a European-wide anoxic event that is manifest as an intensification of anoxia in basinal locations to the point that stable euxinic conditions were developed (for example, in the basins of the Holy Cross Mountains, Poland). The interval also saw the spread of dysoxic waters into very shallow water (for instance, reefal) locations, and it seems reasonable to link the contemporaneous demise of many marine taxa to this phase of intense and widespread anoxia. In basinal locations, euxinic conditions persisted into the earliest Famennian with little change of depositional conditions. Only in the continental margin location of Austria was anoxia not developed at any time in the Late Devonian. Consequently it appears that the Upper Kellwasser anoxic event was an epicontinental seaway phenomenon, caused by the upward expansion of anoxia from deep basinal locales rather than an ‘oceanic’ anoxic event that has spilled laterally into epicontinental settings.


2002 ◽  
Vol 154 (1-2) ◽  
pp. 11-30 ◽  
Author(s):  
Erwin W Adams ◽  
Michele Morsilli ◽  
Wolfgang Schlager ◽  
Lorenz Keim ◽  
Tomas van Hoek

Sign in / Sign up

Export Citation Format

Share Document