autonomous optimization
Recently Published Documents


TOTAL DOCUMENTS

27
(FIVE YEARS 14)

H-INDEX

5
(FIVE YEARS 2)

Symmetry ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2263
Author(s):  
Leo Matsuoka ◽  
Kenta Yuki ◽  
Hynek Lavička ◽  
Etsuo Segawa

Maze-solving by natural phenomena is a symbolic result of the autonomous optimization induced by a natural system. We present a method for finding the shortest path on a maze consisting of a bipartite graph using a discrete-time quantum walk, which is a toy model of many kinds of quantum systems. By evolving the amplitude distribution according to the quantum walk on a kind of network with sinks, which is the exit of the amplitude, the amplitude distribution remains eternally on the paths between two self-loops indicating the start and the goal of the maze. We performed a numerical analysis of some simple cases and found that the shortest paths were detected by the chain of the maximum trapped densities in most cases of bipartite graphs. The counterintuitive dependence of the convergence steps on the size of the structure of the network was observed in some cases, implying that the asymmetry of the network accelerates or decelerates the convergence process. The relation between the amplitude remaining and distance of the path is also discussed briefly.


Author(s):  
Jianli Zhao ◽  
Shaodi Zhang ◽  
Ciwei Gao ◽  
Sisi Ma ◽  
Siya Wei ◽  
...  

Author(s):  
Adrian Hauswirth ◽  
Saverio Bolognani ◽  
Gabriela Hug ◽  
Florian Dorfler

2020 ◽  
Author(s):  
Melodie Christensen ◽  
Lars Yunker ◽  
Folarin Adedeji ◽  
Florian Häse ◽  
Loïc Roch ◽  
...  

Abstract Autonomous process optimization involves the human intervention-free exploration of a range of pre-defined process parameters in order to improve responses such as reaction yield and product selectivity. Utilizing off-the-shelf components, we developed a closed-loop system capable of carrying out parallel autonomous process optimization experiments in batch with significantly reduced cycle times. Upon implementation of our system in the autonomous optimization of a palladium-catalyzed stereoselective Suzuki-Miyaura coupling, we found that the definition of a set of meaningful, broad, and unbiased process parameters was the most critical aspect of a successful optimization. In addition, we found that categorical parameters such as phosphine ligand were vital to determining the reaction outcome. To date, categorical parameter selection has relied on chemical intuition, potentially introducing an element of bias into the experimental design. In seeking a systematic method for the selection of a diverse set of phosphine ligands fully representative of the chemical space, we developed a strategy that leveraged computed molecular descriptor clustering analysis. This strategy allowed for the successful autonomous optimization of a stereoselective Suzuki-Miyaura coupling between a vinyl sulfonate and an arylboronic acid to selectively generate the E-product isomer in high yield.


2020 ◽  
Author(s):  
Melodie Christensen ◽  
Lars Yunker ◽  
Folarin Adedeji ◽  
Florian Häse ◽  
Loic Roch ◽  
...  

<p>Autonomous process optimization involves the human intervention-free exploration of a range of pre-defined process parameters in order to improve responses such as reaction yield and product selectivity. Utilizing off-the-shelf components, we developed a closed-loop system capable of carrying out parallel autonomous process optimization experiments in batch with significantly reduced cycle times. Upon implementation of our system in the autonomous optimization of a palladium-catalyzed stereoselective Suzuki-Miyaura coupling, we found that the definition of a set of meaningful, broad, and unbiased process parameters was the most critical aspect of a successful optimization. In addition, we found that categorical parameters such as phosphine ligand were vital to determining the reaction outcome. To date, categorical parameter selection has relied on chemical intuition, potentially introducing an element of bias into the experimental design. In seeking a systematic method for the selection of a diverse set of phosphine ligands fully representative of the chemical space, we developed a strategy that leveraged computed molecular descriptor clustering analysis. This strategy allowed for the successful autonomous optimization of a stereoselective Suzuki-Miyaura coupling between a vinyl sulfonate and an arylboronic acid to selectively generate the <i>E</i>-product isomer in high yield. </p>


2020 ◽  
Author(s):  
Melodie Christensen ◽  
Lars Yunker ◽  
Folarin Adedeji ◽  
Florian Häse ◽  
Loic Roch ◽  
...  

<p>Autonomous process optimization involves the human intervention-free exploration of a range of pre-defined process parameters in order to improve responses such as reaction yield and product selectivity. Utilizing off-the-shelf components, we developed a closed-loop system capable of carrying out parallel autonomous process optimization experiments in batch with significantly reduced cycle times. Upon implementation of our system in the autonomous optimization of a palladium-catalyzed stereoselective Suzuki-Miyaura coupling, we found that the definition of a set of meaningful, broad, and unbiased process parameters was the most critical aspect of a successful optimization. In addition, we found that categorical parameters such as phosphine ligand were vital to determining the reaction outcome. To date, categorical parameter selection has relied on chemical intuition, potentially introducing an element of bias into the experimental design. In seeking a systematic method for the selection of a diverse set of phosphine ligands fully representative of the chemical space, we developed a strategy that leveraged computed molecular descriptor clustering analysis. This strategy allowed for the successful autonomous optimization of a stereoselective Suzuki-Miyaura coupling between a vinyl sulfonate and an arylboronic acid to selectively generate the <i>E</i>-product isomer in high yield. </p>


2020 ◽  
Author(s):  
Melodie Christensen ◽  
Lars Yunker ◽  
Folarin Adedeji ◽  
Florian Häse ◽  
Loic Roch ◽  
...  

<p>Autonomous process optimization involves the human intervention-free exploration of a range of pre-defined process parameters in order to improve responses such as reaction yield and product selectivity. Utilizing off-the-shelf components, we developed a closed-loop system capable of carrying out parallel autonomous process optimization experiments in batch with significantly reduced cycle times. Upon implementation of our system in the autonomous optimization of a palladium-catalyzed stereoselective Suzuki-Miyaura coupling, we found that the definition of a set of meaningful, broad, and unbiased process parameters was the most critical aspect of a successful optimization. In addition, we found that categorical parameters such as phosphine ligand were vital to determining the reaction outcome. To date, categorical parameter selection has relied on chemical intuition, potentially introducing an element of bias into the experimental design. In seeking a systematic method for the selection of a diverse set of phosphine ligands fully representative of the chemical space, we developed a strategy that leveraged computed molecular descriptor clustering analysis. This strategy allowed for the successful autonomous optimization of a stereoselective Suzuki-Miyaura coupling between a vinyl sulfonate and an arylboronic acid to selectively generate the <i>E</i>-product isomer in high yield. </p>


Sign in / Sign up

Export Citation Format

Share Document