plane joint
Recently Published Documents


TOTAL DOCUMENTS

53
(FIVE YEARS 9)

H-INDEX

12
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Chaochao Yin ◽  
Haihong Huang ◽  
Dan Zhou ◽  
Zhifeng Liu

Abstract Effects of surface texturing on the normal contact stiffness of joint surfaces had been investigated by experiments in many previous researches; however, there are relatively few theoretical models in this regard. The rough surface with surface texturing can be divided into two parts: the textured zone and the remaining zone, and their theoretical models are established respectively in this research considering surface morphology and material properties. For the textured zone, micro textures are modeled theoretically based on the three-dimensional topographic data obtained via a VK-X250 type laser profilometer from KEYENCE. For the remaining zone, the model of normal contact stiffness is established based on the fractal theory for the surface topography description and elastoplastic deformation of surface asperities, and the structure function method is used to calculate the fractal dimension of rough surface profiles. In the experiment, the normal contact stiffness of specimens is obtained under different normal loads, and the test results are compared with the theoretical predictions. The result shows that the predictions of proposed theoretical model are in good agreement with the experimental data. For the joint surfaces with Sa > 2.69 μm, the normal contact stiffness can be effectively increased through proper surface texturing.


2021 ◽  
Vol 36 (2) ◽  
pp. 108-128
Author(s):  
Adam Mattiussi ◽  
Joseph W Shaw ◽  
Derrick D Brown ◽  
Phil Price ◽  
Daniel D Cohen ◽  
...  

AIMS: Understanding the biomechanics of jumping in ballet dancers provides an opportunity to optimize performance and mitigate injury risk. This systematic review aimed to summarize research investigating kinetics and kinematics of jumping in ballet dancers. METHODS: PubMed (MEDLINE), SPORTDiscus, and Web of Science were systematically searched for studies published before December 2020. Studies were required to investigate dancers specializing in ballet, assess kinetics or kinematics during take-off or landing, and be published in English. RESULTS: A total of 3,781 articles were identified, of which 29 met the inclusion criteria. Seven studies investigated take-off (kinetics: n = 6; kinematics: n = 4) and 23 studies investigated landing (kinetics: n = 19; kinematics: n = 12). Included articles were categorized into six themes: Activity Type (n = 10), Environment and Equipment (n = 10), Demographics (n = 8), Physical Characteristics (n = 3), Injury Status (n = 2), and Skill Acquisition and Motor Control (n = 1). Peak landing vertical ground reaction force (1.4 x 9.6 times body weight) was most commonly reported. Limited evidence suggests greater ankle involvement during the take-off of ballet jumps compared to countermovement jumps. There is also limited evidence indicating greater sagittal plane joint excursions upon landing in ballet dancers compared to non-dancers, primarily through a more extended lower extremity at initial contact. Only 4 articles investigated male ballet dancers, which is a notable gap in the literature. CONCLUSIONS: The findings of this review can be used by dance science and medicine practitioners to improve their understanding of jumping in ballet dancers.


Author(s):  
Devin K. Kelly ◽  
Mark L. McMulkin ◽  
Corinna Franklin ◽  
Kevin M. Cooney

Running ability is critical to maintaining activity participation with peers. Children and adolescents with cerebral palsy (CP) are often stated to run better than they walk, but running is not often quantitatively measured. The purpose of this study was to utilize overall gait deviation indices to determine if children with diplegic CP run closer to typically developing children than they walk. This retrospective comparative study utilized 3D running kinematics that were collected after walking data at two clinical motion analysis centers for children with diplegic cerebral palsy. Separate walking and running Gait Deviation Indices (GDI Walk and GDI* Run), overall indices of multiple plane/joint motions, were calculated and scaled for each participant so that a typically developing mean was 100 with standard deviation of 10. An analysis of variance was used to compare the variables Activity (walking vs running) and Center (data collected at two different motion analysis laboratories). Fifty participants were included in the study. The main effect of Activity was not significant, mean GDI Walk = 76.4 while mean GDI* Run = 77.1, p = 0.84. Mean GDI scores for walking and running were equivalent, suggesting children with diplegic cerebral palsy as a group have similar walking and running quality. However, individual differences varied between activities, emphasizing the need for individual assessment considering specific goals related to running.


2020 ◽  
Vol 52 (7S) ◽  
pp. 672-672
Author(s):  
Kevin A. Valenzuela ◽  
Kellie Walters ◽  
Alexis Camacho ◽  
Fany Alvarado ◽  
Elizabeth Avila ◽  
...  

2020 ◽  
pp. 1-15
Author(s):  
Jeff T. Wight ◽  
Jordon E. J. Garman ◽  
David R. Hooper ◽  
Christopher T. Robertson ◽  
Reed Ferber ◽  
...  

2019 ◽  
Vol 51 (Supplement) ◽  
pp. 699
Author(s):  
David R. Hooper ◽  
Jeff T. Wight ◽  
Jaclyn O’Loughlin ◽  
Jordon Garman ◽  
Ryan S. Sloan ◽  
...  

2019 ◽  
Vol 51 (Supplement) ◽  
pp. 64-65
Author(s):  
Anna C. Severin ◽  
Daniel B. Mellifont ◽  
Mark GL Sayers

2019 ◽  
Vol 14 (5) ◽  
pp. 583-589 ◽  
Author(s):  
Jason D. Stone ◽  
Adam C. King ◽  
Shiho Goto ◽  
John D. Mata ◽  
Joseph Hannon ◽  
...  

Purpose: To provide a joint-level analysis of traditional (TS) and cluster (CS) set structure during the back-squat exercise. Methods: Eight men (24 [3] y, 177.3 [7.9] cm, 82.7 [11.0] kg, 11.9 [3.5] % body fat, and 150.3 [23.0] kg 1-repetition maximum [1RM]) performed the back-squat exercise (80%1RM) using TS (4 × 6, 2-min interset rest) and CS (4 × [2 × 3], 30-s intraset rest, 90-s interset rest), randomly. Lower-limb kinematics were collected by motion capture, as well as kinetic data by bilateral force platforms. Results: CS attenuated the loss in mean power (TS −21.6% [3.9%]; CS −12.4% [7.5%]; P = .042), although no differences in gross movement pattern (sagittal-plane joint angles) within and between conditions were observed (P ≥ .05). However, joint power produced at the hip increased from repetition (REP) 1 through REP 6 during TS, while a decrease was noted at the knee. A similar pattern was observed in the CS condition but was limited to the hip. Joint power produced at the hip increased from REP 1 through REP 3 but returned to REP 1 values before a similar increase through REP 6, resulting in differences between conditions (REP 4, P = .018; REP 5, P = .022). Conclusions: Sagittal-plane joint angles did not change in either condition, although CS elicited greater power. Differing joint power contributions (hip and knee) suggest potential central mechanism that may contribute to enhanced power output during CS and warrant further study. Practitioners should consider incorporating CS into training to promote greater power adaptations and to mitigate fatigue.


Sign in / Sign up

Export Citation Format

Share Document