limb kinematics
Recently Published Documents


TOTAL DOCUMENTS

369
(FIVE YEARS 119)

H-INDEX

33
(FIVE YEARS 4)

Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 672
Author(s):  
Juri Taborri ◽  
Alessandro Santuz ◽  
Leon Brüll ◽  
Adamantios Arampatzis ◽  
Stefano Rossi

Daily life activities often require humans to perform locomotion in challenging scenarios. In this context, this study aimed at investigating the effects induced by anterior-posterior (AP) and medio-lateral (ML) perturbations on walking. Through this aim, the experimental protocol involved 12 participants who performed three tasks on a treadmill consisting of one unperturbed and two perturbed walking tests. Inertial measurement units were used to gather lower limb kinematics. Parameters related to joint angles, as the range of motion (ROM) and its variability (CoV), as well as the inter-joint coordination in terms of continuous relative phase (CRP) were computed. The AP perturbation seemed to be more challenging causing differences with respect to normal walking in both the variability of the ROM and the CRP amplitude and variability. As ML, only the ankle showed different behavior in terms of joint angle and CRP variability. In both tasks, a shortening of the stance was found. The findings should be considered when implementing perturbed rehabilitative protocols for falling reduction.


2022 ◽  
Author(s):  
Yuki Saito ◽  
Tomoya Ishida ◽  
Yoshiaki Kataoka ◽  
Ryo Takeda ◽  
Shigeru Tadano ◽  
...  

Abstract Background: Locomotive syndrome (LS) is a condition where a person requires nursing care services due to problems with locomotive abilities and musculoskeletal systems. Individuals with LS have a reduced walking speed compared to those without LS. However, differences in lower-limb kinematics and during walking between individuals with and without LS are not fully understood. The purpose of this study is to clarify the characteristics of gait kinematics using wearable sensors for individuals with LS.Methods: We assessed 125 people aged 65 years and older who utilized a public health promotion facility. The participants were grouped into Non-LS, LS-stage 1, LS-stage 2 (large number indicate worse locomotive ability) based on 25-question Geriatric Locomotive Function Scale (GLFS-25). Spatiotemporal parameters and lower-limb kinematics during 10-m walking test were analyzed by 7-inertia-sensors based motion analysis system. Peak joint angles during stance and swing phase as well as gait speed, cadence and step length were compared among all groups.Results: The number of each LS stage was 69, 33, 23 for Non-LS, LS-stage 1, LS-stage 2, respectively. LS-stage2 group showed significantly smaller peak hip extension angle, hip flexion angle and knee flexion angle than Non-LS group (hip extension: Non-LS: 9.5 ± 5.3°, LS-stage 2: 4.2 ± 8.2°, P = 0.002; hip flexion: No-LS: 34.2 ± 8.8°, LS-stage 2: 28.5 ± 9.5°, P = 0.026; knee flexion: Non-LS: 65.2 ± 18.7°, LS-stage 2: 50.6 ± 18.5°, P = 0.005). LS-stage 1 and LS-stage 2 groups showed significantly slower gait speed than Non-LS group (Non-LS 1.3 ± 0.2 m/s, LS-stage1 1.2 ± 0.2 m/s, LS-stage2 1.1 ± 0.2 m/s, P < 0.001).Conclusions: LS-stage2 group showed significantly different lower-limb kinematics compared with Non-LS group including smaller hip extension, hip flexion and knee flexion. The intervention based on these kinematic characteristics measured by wearable sensors would be useful to improve the locomotive ability for individuals classified LS-stage2.


Biology ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 8
Author(s):  
Kathryn A. Farina ◽  
Michael E. Hahn

Relatively high frontal and transverse plane motion in the lower limbs during running have been thought to play a role in the development of some running-related injuries (RRIs). Increasing step rate has been shown to significantly alter lower limb kinematics and kinetics during running. The purpose of this study was to evaluate the effects of increasing step rate on rearfoot kinematics, and to confirm how ground reaction forces (GRFs) are adjusted with increased step rate. Twenty runners ran on a force instrumented treadmill while marker position data were collected under three conditions. Participants ran at their preferred pace and step rate, then +5% and +10% of their preferred step rate while being cued by a metronome for three minutes each. Sagittal and frontal plane angles for the rearfoot segment, tibial rotation, and GRFs were calculated during the stance phase of running. Significant decreases were observed in sagittal and frontal plane rearfoot angles, tibial rotation, vertical GRF, and anteroposterior GRF with increased step rate compared with the preferred step rate. Increasing step rate significantly decreased peak sagittal and frontal plane rearfoot and tibial rotation angles. These findings may have implications for some RRIs and gait retraining.


Sensors ◽  
2021 ◽  
Vol 21 (24) ◽  
pp. 8303
Author(s):  
Jia-Wen Yam ◽  
Jing-Wen Pan ◽  
Pui-Wah Kong

To better understand the biomechanics of para-table tennis players, this study compared the shoulder, elbow, and wrist joint kinematics among able-bodied (AB) and wheelchair players in different classifications. Nineteen participants (AB, n = 9; classification 1 (C1), n = 3; C2, n = 3; C3, n = 4) executed 10 forehand and backhand topspin drives. Shoulder abduction/adduction, elbow flexion/extension, wrist extension/flexion, respective range of motion (ROM), and joint patterns were obtained using inertial measurement unit (IMU) sensors. The results showed clear differences in upper limb kinematics between the able-bodied and wheelchair players, especially in the elbow and wrist. For the para-players, noticeable variations in techniques were also observed among the different disability classes. In conclusion, wheelchair players likely adopted distinct movement strategies compared to AB to compensate for their physical impairments and functional limitations. Hence, traditional table tennis programs targeting skills and techniques for able-bodied players are unsuitable for para-players. Future work can investigate how best to customize training programs and to optimize movement strategies for para-players with varied types and degrees of impairment.


Author(s):  
Corey J. Fisher ◽  
Karen C. Scott ◽  
Hayley K. Reiter ◽  
Melissa A. Reid ◽  
Charles M. Roe ◽  
...  

Abstract OBJECTIVE To evaluate the effects of a flotation vest (FV) and water flow rate (WFR) on limb kinematics of dogs swimming against a current. ANIMALS 7 (1 male and 6 female) healthy adult Siberian Huskies. PROCEDURES Dogs were habituated to swim with and without an FV beside an investigator in a continuous-flow pool against WFRs up to 2.9 km/h. During each of 4 experimental sessions in a repeated-measures study, markers were wrapped around the right carpus and tarsus, and a video was recorded while each dog swam with or without an FV for about 2 minutes at each of 7 WFRs between 0 and 2.9 km/h when the WFR was incrementally decreased or increased. Motion tracking software was used to measure stroke excursion and frequency. RESULTS Stroke excursion varied more than frequency among all dogs and in response to changes in experimental conditions. The male dog and 1 female dog were unable to complete the study. For the remaining 5 dogs across all experimental conditions, mean tarsus excursion was 30% that of the carpus. Mean total excursion (sum of the excursion-frequency products for the carpus and tarsus) decreased when an FV was worn and increased with WFR by 69% and 19% when WFR was incrementally increased and decreased, respectively. CONCLUSIONS AND CLINICAL RELEVANCE In dogs, range of motion during swimming was greater for the carpus than tarsus, when an FV was not worn, and increased more with WFR when WFR was incrementally increased. Those factors should be considered during swimming-based rehabilitation.


Ergonomics ◽  
2021 ◽  
pp. 1-12
Author(s):  
Mohan Gawande ◽  
Peng Wang ◽  
Graham Arnold ◽  
Sadiq Nasir ◽  
Rami Abboud ◽  
...  
Keyword(s):  

Sensors ◽  
2021 ◽  
Vol 21 (23) ◽  
pp. 7773
Author(s):  
Alireza Rezaie Zangene ◽  
Ali Abbasi ◽  
Kianoush Nazarpour

The aim of the present study was to predict the kinematics of the knee and the ankle joints during a squat training task of different intensities. Lower limb surface electromyographic (sEMG) signals and the 3-D kinematics of lower extremity joints were recorded from 19 body builders during squat training at four loading conditions. A long-short term memory (LSTM) was used to estimate the kinematics of the knee and the ankle joints. The accuracy, in terms root-mean-square error (RMSE) metric, of the LSTM network for the knee and ankle joints were 6.774 ± 1.197 and 6.961 ± 1.200, respectively. The LSTM network with inputs processed by cross-correlation (CC) method showed 3.8% and 4.7% better performance in the knee and ankle joints, respectively, compared to when the CC method was not used. Our results showed that in the prediction, regardless of the intensity of movement and inter-subject variability, an off-the-shelf LSTM decoder outperforms conventional fully connected neural networks.


2021 ◽  
pp. 1-15
Author(s):  
Yuji Matsuda ◽  
Masaki Kaneko ◽  
Yoshihisa Sakurai ◽  
Keita Akashi ◽  
Sengoku Yasuo

Author(s):  
Masaya Iijima ◽  
V. David Munteanu ◽  
Ruth M. Elsey ◽  
Richard W. Blob

As animals increase in size, common patterns of morphological and physiological scaling may require them to perform behaviors such as locomotion while experiencing a reduced capacity to generate muscle force and an increased risk of tissue failure. Large mammals are known to manage increased mechanical demands by using more upright limb posture. However, the presence of such size-dependent changes in limb posture has rarely been tested in animals that use non-parasagittal limb kinematics. Here, we used juvenile to subadult American alligators (total length 0.46–1.27 m, body mass 0.3–5.6 kg) and examined their limb kinematics, forces, joint moments, and center of mass to test for ontogenetic shifts in posture and limb mechanics. Larger alligators typically walked with a more adducted humerus and femur and a more extended knee. Normalized peak joint moments reflected these postural patterns, with shoulder and hip moments imposed by the ground reaction force showing relatively greater magnitudes in the smallest individuals. Thus, as larger alligators use more upright posture, they incur relatively smaller joint moments than smaller alligators, which could reduce the forces that the shoulder and hip adductors of larger alligators must generate. The center of mass (CoM) shifted nonlinearly from juveniles through subadults. The more anteriorly positioned CoM in small alligators, together with their compliant hindlimbs, contributes to their higher forelimb and lower hindlimb normalized peak vertical forces in comparison to larger alligators. Future studies of alligators that approach maximal adult sizes could give further insight into how animals with non-parasagittal limb posture modulate locomotor patterns as they increase in mass and experience changes in the CoM.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Emma Reznick ◽  
Kyle R. Embry ◽  
Ross Neuman ◽  
Edgar Bolívar-Nieto ◽  
Nicholas P. Fey ◽  
...  

AbstractHuman locomotion involves continuously variable activities including walking, running, and stair climbing over a range of speeds and inclinations as well as sit-stand, walk-run, and walk-stairs transitions. Understanding the kinematics and kinetics of the lower limbs during continuously varying locomotion is fundamental to developing robotic prostheses and exoskeletons that assist in community ambulation. However, available datasets on human locomotion neglect transitions between activities and/or continuous variations in speed and inclination during these activities. This data paper reports a new dataset that includes the lower-limb kinematics and kinetics of ten able-bodied participants walking at multiple inclines (±0°; 5° and 10°) and speeds (0.8 m/s; 1 m/s; 1.2 m/s), running at multiple speeds (1.8 m/s; 2 m/s; 2.2 m/s and 2.4 m/s), walking and running with constant acceleration (±0.2; 0.5), and stair ascent/descent with multiple stair inclines (20°; 25°; 30° and 35°). This dataset also includes sit-stand transitions, walk-run transitions, and walk-stairs transitions. Data were recorded by a Vicon motion capture system and, for applicable tasks, a Bertec instrumented treadmill.


Sign in / Sign up

Export Citation Format

Share Document