fatty acid esterification
Recently Published Documents


TOTAL DOCUMENTS

91
(FIVE YEARS 6)

H-INDEX

23
(FIVE YEARS 2)

2021 ◽  
Vol 1918 (3) ◽  
pp. 032022
Author(s):  
R D Kusumaningtyas ◽  
Haifah ◽  
D Widjanarko ◽  
H Prasetiawan ◽  
Y W P Budiono ◽  
...  

2021 ◽  
Vol 9 (17) ◽  
pp. 6001-6011
Author(s):  
Massimo Melchiorre ◽  
Maria Elena Cucciolito ◽  
Martino Di Serio ◽  
Francesco Ruffo ◽  
Oreste Tarallo ◽  
...  

RSC Advances ◽  
2020 ◽  
Vol 10 (34) ◽  
pp. 20245-20256 ◽  
Author(s):  
Ana Paula da Luz Corrêa ◽  
Rafael Roberto Cardoso Bastos ◽  
Geraldo Narciso da Rocha Filho ◽  
José Roberto Zamian ◽  
Leyvison Rafael Vieira da Conceição

In the present study, heterogeneous acid catalysts for fatty acid esterification reactions were synthesized using agro-industrial waste from murumuru kernel shells.


2019 ◽  
Vol 22 (11-12) ◽  
pp. 761-770 ◽  
Author(s):  
Nurul Asmawati Roslan ◽  
Norhayati Abdullah ◽  
Sumaiya Zainal Abidin

2018 ◽  
Vol 315 (2) ◽  
pp. G249-G258 ◽  
Author(s):  
Austin Potts ◽  
Aki Uchida ◽  
Stanislaw Deja ◽  
Eric D. Berglund ◽  
Blanka Kucejova ◽  
...  

Cytosolic phosphoenolpyruvate carboxykinase (PEPCK) is a gluconeogenic enzyme that is highly expressed in the liver and kidney but is also expressed at lower levels in a variety of other tissues where it may play adjunct roles in fatty acid esterification, amino acid metabolism, and/or TCA cycle function. PEPCK is expressed in the enterocytes of the small intestine, but it is unclear whether it supports a gluconeogenic rate sufficient to affect glucose homeostasis. To examine potential roles of intestinal PEPCK, we generated an intestinal PEPCK knockout mouse. Deletion of intestinal PEPCK ablated ex vivo gluconeogenesis but did not significantly affect glycemia in chow, high-fat diet, or streptozotocin-treated mice. In contrast, postprandial triglyceride secretion from the intestine was attenuated in vivo, consistent with a role in fatty acid esterification. Intestinal amino acid profiles and 13C tracer appearance into these pools were significantly altered, indicating abnormal amino acid trafficking through the enterocyte. The data suggest that the predominant role of PEPCK in the small intestine of mice is not gluconeogenesis but rather to support nutrient processing, particularly with regard to lipids and amino acids. NEW & NOTEWORTHY The small intestine expresses gluconeogenic enzymes for unknown reasons. In addition to glucose synthesis, the nascent steps of this pathway can be used to support amino acid and lipid metabolisms. When phosphoenolpyruvate carboxykinase, an essential gluconeogenic enzyme, is knocked out of the small intestine of mice, glycemia is unaffected, but mice inefficiently absorb dietary lipid, have abnormal amino acid profiles, and inefficiently catabolize glutamine. Therefore, the initial steps of intestinal gluconeogenesis are used for processing dietary triglycerides and metabolizing amino acids but are not essential for maintaining blood glucose levels.


2017 ◽  
Vol 29 (2) ◽  
pp. 1002-1006 ◽  
Author(s):  
Valeria Cavallaro ◽  
Daniel Ricardo Ercoli ◽  
Gabriela Marta Tonetto ◽  
María Luján Ferreira

Biofuels ◽  
2017 ◽  
Vol 11 (5) ◽  
pp. 561-576 ◽  
Author(s):  
Sumaiya Zainal Abidin ◽  
Nursofia Mohd Yunus ◽  
Siti Amirah Abdul Ghani ◽  
Nurul Asmawati Roslan ◽  
Chin Sim Yee

Sign in / Sign up

Export Citation Format

Share Document