scholarly journals Arithmetic Formulated Relevantly

2021 ◽  
Vol 18 (5) ◽  
pp. 154-288
Author(s):  
Robert Meyer

The purpose of this paper is to formulate first-order Peano arithmetic within the resources of relevant logic, and to demonstrate certain properties of the system thus formulated. Striking among these properties are the facts that (1) it is trivial that relevant arithmetic is absolutely consistent, but (2) classical first-order Peano arithmetic is straightforwardly contained in relevant arithmetic. Under (1), I shall show in particular that 0 = 1 is a non-theorem of relevant arithmetic; this, of course, is exactly the formula whose unprovability was sought in the Hilbert program for proving arithmetic consistent. Under (2), I shall exhibit the requisite translation, drawing some Goedelian conclusions therefrom. Left open, however, is the critical problem whether Ackermann’s rule γ is admissible for theories of relevant arithmetic. The particular system of relevant Peano arithmetic featured in this paper shall be called R♯. Its logical base shall be the system R of relevant implication, taken in its first-order form RQ. Among other Peano arithmetics we shall consider here in particular the systems C♯, J♯, and RM3♯; these are based respectively on the classical logic C, the intuitionistic logic J, and the Sobocinski-Dunn semi-relevant logic RM3. And another feature of the paper will be the presentation of a system of natural deduction for R♯, along lines valid for first-order relevant theories in general. This formulation of R♯ makes it possible to construct relevantly valid arithmetical deductions in an easy and natural way; it is based on, but is in some respects more convenient than, the natural deduction formulations for relevant logics developed by Anderson and Belnap in Entailment.

1992 ◽  
Vol 57 (3) ◽  
pp. 824-831 ◽  
Author(s):  
Harvey Friedman ◽  
Robert K. Meyer

AbstractBased on the relevant logic R, the system R# was proposed as a relevant Peano arithmetic. R# has many nice properties: the most conspicuous theorems of classical Peano arithmetic PA are readily provable therein; it is readily and effectively shown to be nontrivial; it incorporates both intuitionist and classical proof methods. But it is shown here that R# is properly weaker than PA, in the sense that there is a strictly positive theorem QRF of PA which is unprovable in R#. The reason is interesting: if PA is slightly weakened to a subtheory P+, it admits the complex ring C as a model; thus QRF is chosen to be a theorem of PA but false in C. Inasmuch as all strictly positive theorems of R# are already theorems of P+, this nonconservativity result shows that QRF is also a nontheorem of R#. As a consequence, Ackermann's rule γ is inadmissible in R#. Accordingly, an extension of R# which retains its good features is desired. The system R##, got by adding an omega-rule, is such an extension. Central question: is there an effectively axiomatizable system intermediate between R# and R#, which does formalize arithmetic on relevant principles, but also admits γ in a natural way?


2018 ◽  
Vol 11 (3) ◽  
pp. 507-518
Author(s):  
PHILIP KREMER

AbstractWe add propositional quantifiers to the propositional modal logic S4 and to the propositional intuitionistic logic H, introducing axiom schemes that are the natural analogs to axiom schemes typically used for first-order quantifiers in classical and intuitionistic logic. We show that the resulting logics are sound and complete for a topological semantics extending, in a natural way, the topological semantics for S4 and for H.


1995 ◽  
Vol 5 (3) ◽  
pp. 323-349 ◽  
Author(s):  
Philippa Gardner

We propose a new framework for representing logics, called LF+, which is based on the Edinburgh Logical Framework. The new framework allows us to give, apparently for the first time, general definitions that capture how well a logic has been represented. These definitions are possible because we are able to distinguish in a generic way that part of the LF+ entailment corresponding to the underlying logic. This distinction does not seem to be possible with other frameworks. Using our definitions, we show that, for example, natural deduction first-order logic can be well-represented in LF+, whereas linear and relevant logics cannot. We also show that our syntactic definitions of representation have a simple formulation as indexed isomorphisms, which both confirms that our approach is a natural one and provides a link between type-theoretic and categorical approaches to frameworks.


2019 ◽  
Vol 16 (2) ◽  
pp. 10
Author(s):  
Peter Verdée ◽  
Inge De Bal ◽  
Aleksandra Samonek

In this paper we first develop a logic independent account of relevant implication. We propose a stipulative denition of what it means for a multiset of premises to relevantly L-imply a multiset of conclusions, where L is a Tarskian consequence relation: the premises relevantly imply the conclusions iff there is an abstraction of the pair <premises, conclusions> such that the abstracted premises L-imply the abstracted conclusions and none of the abstracted premises or the abstracted conclusions can be omitted while still maintaining valid L-consequence.          Subsequently we apply this denition to the classical logic (CL) consequence relation to obtain NTR-consequence, i.e. the relevant CL-consequence relation in our sense, and develop a sequent calculus that is sound and complete with regard to relevant CL-consequence. We present a sound and complete sequent calculus for NTR. In a next step we add rules for an object language relevant implication to thesequent calculus. The object language implication reflects exactly the NTR-consequence relation. One can see the resulting logic NTR-> as a relevant logic in the traditional sense of the word.       By means of a translation to the relevant logic R, we show that the presented logic NTR is very close to relevance logics in the Anderson-Belnap-Dunn-Routley-Meyer tradition. However, unlike usual relevant logics, NTR is decidable for the full language, Disjunctive Syllogism (A and ~AvB relevantly imply B) and Adjunction (A and B relevantly imply A&B) are valid, and neither Modus Ponens nor the Cut rule are admissible.


1987 ◽  
Vol 52 (2) ◽  
pp. 526-529 ◽  
Author(s):  
Steve Giambrone ◽  
Robert K. Meyer ◽  
Alasdair Urquhart

Semilattice semantics for relevant logics were discovered independently by Routley and Urquhart over 10 years ago. A semilattice semantics was first published in [10], where the weak theory of implication of [8] and [3] (i.e., R →, the pure implication fragment of the system R of relevant implication) is shown to be consistent and complete with respect to it. That result was extended in [11], But the semantics is explored in greatest detail in [12]. As reported in [4], Fine outfitted the positive semilattice semantics for R+ with a suitable Hilbert-style axiomatisation. (We refer to the system as ◡R+.) In 1980 Charlwood supplied a subscripted system of natural deduction. (See [1] and [2].) A subscripted Gentzen system was devised in [5] and [6].Obviously, the central idea of the semilattice semantics is to impose relevant-style valuations on a semilattice (with an identity) used as the underlying model structure. However, in [12] the contractionless semantics are obtained (quite reasonably) by dropping the idempotence postulate and thus changing the relatively simple semilattice structure into a commutative monoid. Here we show that the semilattice structure can be regained for positive, contractionless relevant implication. Although we have no proofs as yet, we think that this semantics will pave the way for showing completeness for the corresponding subscripted Gentzen and natural deduction systems, as well as the Hilbert-style axiomatization, ◡RW+.


2006 ◽  
Vol 71 (1) ◽  
pp. 35-66 ◽  
Author(s):  
Ross T. Brady

Fitch-style natural deduction was first introduced into relevant logic by Anderson in [1960], for the sentential logic E of entailment and its quantincational extension EQ. This was extended by Anderson and Belnap to the sentential relevant logics R and T and some of their fragments in [ENT1], and further extended to a wide range of sentential and quantified relevant logics by Brady in [1984]. This was done by putting conditions on the elimination rules, →E, ~E, ⋁E and ∃E, pertaining to the set of dependent hypotheses for formulae used in the application of the rule. Each of these rules were subjected to the same condition, this condition varying from logic to logic. These conditions, together with the set of natural deduction rules, precisely determine the particular relevant logic. Generally, this is a simpler representation of a relevant logic than the standard Routley-Meyer semantics, with its existential modelling conditions stated in terms of an otherwise arbitrary 3-place relation R, which is defined over a possibly infinite set of worlds. Readers are urged to refer to Brady [1984], if unfamiliar with the above natural deduction systems, but we will introduce in §2 a modified version in full detail.Natural deduction for classical logic was invented by Jaskowski and Gentzen, but it was Prawitz in [1965] who normalized natural deduction, streamlining its rules so as to allow a subformula property to be proved. (This key property ensures that each formula in the proof of a theorem is indeed a subformula of that theorem.)


2000 ◽  
Vol 10 (1) ◽  
pp. 1-79 ◽  
Author(s):  
HEALFDENE GOGUEN ◽  
JEAN GOUBAULT-LARRECQ

This paper introduces Hilbert systems for λ-calculus, called sequent combinators, addressing many of the problems of Hilbert systems that have led to the more widespread adoption of natural deduction systems in computer science. This suggests that Hilbert systems, with their uniform approach to meta-variables and substitution, may be a more suitable framework than λ-calculus for type theories and programming languages. Two calculi are introduced here. The calculus SKIn captures λ-calculus reduction faithfully, is confluent even in the presence of meta-variables, is normalizing but not strongly normalizing in the typed case, and standardizes. The sub-calculus SKInT captures λ-reduction in slightly less obvious ways, and is a language of proof-terms not directly for intuitionistic logic, but for a fragment of S4 that we name near-intuitionistic logic. To our knowledge, SKInT is the first confluent, first-order calculus to capture λ-calculus reduction fully and faithfully and be strongly normalizing in the typed case. In particular, no calculus of explicit substitutions has yet achieved this goal.


2021 ◽  
pp. 1-22
Author(s):  
SHAWN STANDEFER

Abstract Anderson and Belnap presented indexed Fitch-style natural deduction systems for the relevant logics R, E, and T. This work was extended by Brady to cover a range of relevant logics. In this paper I present indexed tree natural deduction systems for the Anderson–Belnap–Brady systems and show how to translate proofs in one format into proofs in the other, which establishes the adequacy of the tree systems.


Author(s):  
Tim Lyon

Abstract This paper studies the relationship between labelled and nested calculi for propositional intuitionistic logic, first-order intuitionistic logic with non-constant domains and first-order intuitionistic logic with constant domains. It is shown that Fitting’s nested calculi naturally arise from their corresponding labelled calculi—for each of the aforementioned logics—via the elimination of structural rules in labelled derivations. The translational correspondence between the two types of systems is leveraged to show that the nested calculi inherit proof-theoretic properties from their associated labelled calculi, such as completeness, invertibility of rules and cut admissibility. Since labelled calculi are easily obtained via a logic’s semantics, the method presented in this paper can be seen as one whereby refined versions of labelled calculi (containing nested calculi as fragments) with favourable properties are derived directly from a logic’s semantics.


1977 ◽  
Vol 99 (2) ◽  
pp. 85-90 ◽  
Author(s):  
L. S. Bonderson

The system properties of passivity, losslessness, and reciprocity are defined and their necessary and sufficient conditions are derived for a class of linear one-dimensional multipower distributed systems. The utilization of power product pairs as state variables and the representation of the dynamics in first-order form allows results completely analogous to those for lumped-element systems.


Sign in / Sign up

Export Citation Format

Share Document