scholarly journals Equivariant Yamabe problem with boundary

Author(s):  
Pak Tung Ho ◽  
Jinwoo Shin

AbstractAs a generalization of the Yamabe problem, Hebey and Vaugon considered the equivariant Yamabe problem: for a subgroup G of the isometry group, find a G-invariant metric whose scalar curvature is constant in a given conformal class. In this paper, we study the equivariant Yamabe problem with boundary.

2016 ◽  
Vol 14 (01) ◽  
pp. 1750008
Author(s):  
Neda Shojaee ◽  
Morteza MirMohammad Rezaii

In this paper, we study conformal deformations and [Formula: see text]-conformal deformations of Ricci-directional and second type scalar curvatures on Finsler manifolds. Then we introduce the best equation to study the Yamabe problem on Finsler manifolds. Finally, we restrict conformal deformations of metrics to [Formula: see text]-conformal deformations and derive the Yamabe functional and the Yamabe flow in Finsler geometry.


2021 ◽  
Vol 32 (03) ◽  
pp. 2150016
Author(s):  
Pak Tung Ho ◽  
Jinwoo Shin

Let [Formula: see text] be a compact complex manifold of complex dimension [Formula: see text] endowed with a Hermitian metric [Formula: see text]. The Chern-Yamabe problem is to find a conformal metric of [Formula: see text] such that its Chern scalar curvature is constant. In this paper, we prove that the solution to the Chern-Yamabe problem is unique under some conditions. On the other hand, we obtain some results related to the Chern-Yamabe soliton.


2002 ◽  
Vol 322 (4) ◽  
pp. 667-699 ◽  
Author(s):  
Antonio Ambrosetti ◽  
YanYan Li ◽  
Andrea Malchiodi

2017 ◽  
Vol 60 (2) ◽  
pp. 253-268
Author(s):  
Bin Chen ◽  
Lili Zhao

AbstractIn this paper, a newnotion of scalar curvature for a Finslermetric F is introduced, and two conformal invariants Y(M, F) and C(M, F) are deûned. We prove that there exists a Finslermetric with constant scalar curvature in the conformal class of F if the Cartan torsion of F is suõciently small and Y(M, F)C(M, F) < Y(Sn) where Y(Sn) is the Yamabe constant of the standard sphere.


Author(s):  
Saskia Roos ◽  
Nobuhiko Otoba

AbstractFor a closed, connected direct product Riemannian manifold $$(M, g)=(M_1, g_1) \times \cdots \times (M_l, g_l)$$ ( M , g ) = ( M 1 , g 1 ) × ⋯ × ( M l , g l ) , we define its multiconformal class $$ [\![ g ]\!]$$ [ [ g ] ] as the totality $$\{f_1^2g_1\oplus \cdots \oplus f_l^2g_l\}$$ { f 1 2 g 1 ⊕ ⋯ ⊕ f l 2 g l } of all Riemannian metrics obtained from multiplying the metric $$g_i$$ g i of each factor $$M_i$$ M i by a positive function $$f_i$$ f i on the total space M. A multiconformal class $$ [\![ g ]\!]$$ [ [ g ] ] contains not only all warped product type deformations of g but also the whole conformal class $$[\tilde{g}]$$ [ g ~ ] of every $$\tilde{g}\in [\![ g ]\!]$$ g ~ ∈ [ [ g ] ] . In this article, we prove that $$ [\![ g ]\!]$$ [ [ g ] ] contains a metric of positive scalar curvature if and only if the conformal class of some factor $$(M_i, g_i)$$ ( M i , g i ) does, under the technical assumption $$\dim M_i\ge 2$$ dim M i ≥ 2 . We also show that, even in the case where every factor $$(M_i, g_i)$$ ( M i , g i ) has positive scalar curvature, $$ [\![ g ]\!]$$ [ [ g ] ] contains a metric of scalar curvature constantly equal to $$-1$$ - 1 and with arbitrarily large volume, provided $$l\ge 2$$ l ≥ 2 and $$\dim M\ge 3$$ dim M ≥ 3 .


1994 ◽  
Vol 05 (01) ◽  
pp. 125-140 ◽  
Author(s):  
Y. S. POON

We prove that when the dimension of the group of conformal transformations of a compact self-dual manifold is at least three, the conformal class contains either a metric with positive constant scalar curvature or a metric with zero scalar curvature. This result is combined with a topological classification of 4-manifolds to provide a complete geometrical classification of the compact self-dual manifolds whose symmetry group is at least three-dimensional.


2019 ◽  
Vol 21 (05) ◽  
pp. 1850041 ◽  
Author(s):  
Xianfu Liu ◽  
Zuoqin Wang

Let [Formula: see text] be a closed 4-manifold with positive Yamabe invariant and with [Formula: see text]-small Weyl curvature tensor. Let [Formula: see text] be any metric in the conformal class of [Formula: see text] whose scalar curvature is [Formula: see text]-close to a constant. We prove that the set of Riemannian metrics in the conformal class [Formula: see text] that are isospectral to [Formula: see text] is compact in the [Formula: see text] topology.


2020 ◽  
Vol 20 (1) ◽  
pp. 29-60 ◽  
Author(s):  
A. Rod Gover ◽  
Andrew Waldron

AbstractThe invariant theory for conformal hypersurfaces is studied by treating these as the conformal infinity of a conformally compact manifold. Recently it has been shown how, given a conformal hypersurface embedding, a distinguished ambient metric is found (within its conformal class) by solving a singular version of the Yamabe problem [21]. This enables a route to proliferating conformal hypersurface invariants. The aim of this work is to give a self contained and explicit treatment of the calculus and identities required to use this machinery in practice. In addition we show how to compute the solution’s asymptotics. We also develop the calculus for explicitly constructing the conformal hypersurface invariant differential operators discovered in [21] and in particular how to compute extrinsically coupled analogues of conformal Laplacian powers. Our methods also enable the study of integrated conformal hypersurface invariants and their functional variations. As a main application we prove that a class of energy functions proposed in a recent work have the right properties to be deemed higher-dimensional analogues of the Willmore energy. This complements recent progress on the existence and construction of different functionals in [22] and [20].


Sign in / Sign up

Export Citation Format

Share Document