Iterated Function Systems-Self-Similar and Self-Affine Sets

2005 ◽  
pp. 121-150
Author(s):  
Balázs Bárány ◽  
Károly Simon ◽  
István Kolossváry ◽  
Michał Rams

This paper considers self-conformal iterated function systems (IFSs) on the real line whose first level cylinders overlap. In the space of self-conformal IFSs, we show that generically (in topological sense) if the attractor of such a system has Hausdorff dimension less than 1 then it has zero appropriate dimensional Hausdorff measure and its Assouad dimension is equal to 1. Our main contribution is in showing that if the cylinders intersect then the IFS generically does not satisfy the weak separation property and hence, we may apply a recent result of Angelevska, Käenmäki and Troscheit. This phenomenon holds for transversal families (in particular for the translation family) typically, in the self-similar case, in both topological and in measure theoretical sense, and in the more general self-conformal case in the topological sense.


Fractals ◽  
2010 ◽  
Vol 18 (03) ◽  
pp. 271-286 ◽  
Author(s):  
HOUSSAM HNAIDI ◽  
ERIC GUÉRIN ◽  
SAMIR AKKOUCHE

This paper presents two self-similar models that allow the control of curves and surfaces. The first model is based on IFS (Iterated Function Systems) theory and the second on subdivision curve and surface theory. Both of these methods employ the detail concept as in the wavelet transform, and allow the multiresolution control of objects with control points at any resolution level.In the first model, the detail is inserted independently of control points, requiring it to be rotated when applying deformations. In contrast, the second method describes details relative to control points, allowing free control point deformations.Modeling examples of curves and surfaces are presented, showing manipulation facilities of the models.


2010 ◽  
Vol 149 (1) ◽  
pp. 147-172 ◽  
Author(s):  
ZOLTÁN M. BALOGH ◽  
RETO BERGER ◽  
ROBERTO MONTI ◽  
JEREMY T. TYSON

AbstractWe consider self-similar iterated function systems in the sub-Riemannian setting of Carnot groups. We estimate the Hausdorff dimension of the exceptional set of translation parameters for which the Hausdorff dimension in terms of the Carnot–Carathéodory metric is strictly less than the similarity dimension. This extends a recent result of Falconer and Miao from Euclidean space to Carnot groups.


2018 ◽  
Vol 40 (1) ◽  
pp. 213-220 ◽  
Author(s):  
YUTARO HIMEKI ◽  
YUTAKA ISHII

For each $n\geq 2$, we investigate a family of iterated function systems which is parameterized by a common contraction ratio $s\in \mathbb{D}^{\times }\equiv \{s\in \mathbb{C}:0<|s|<1\}$ and possesses a rotational symmetry of order $n$. Let ${\mathcal{M}}_{n}$ be the locus of contraction ratio $s$ for which the corresponding self-similar set is connected. The purpose of this paper is to show that ${\mathcal{M}}_{n}$ is regular-closed, that is, $\overline{\text{int}\,{\mathcal{M}}_{n}}={\mathcal{M}}_{n}$ holds for $n\geq 4$. This gives a new result for $n=4$ and a simple geometric proof of the previously known result by Bandt and Hung [Fractal $n$-gons and their Mandelbrot sets. Nonlinearity 21 (2008), 2653–2670] for $n\geq 5$.


2019 ◽  
Vol 150 (1) ◽  
pp. 261-275 ◽  
Author(s):  
Sascha Troscheit

AbstractThe class of stochastically self-similar sets contains many famous examples of random sets, for example, Mandelbrot percolation and general fractal percolation. Under the assumption of the uniform open set condition and some mild assumptions on the iterated function systems used, we show that the quasi-Assouad dimension of self-similar random recursive sets is almost surely equal to the almost sure Hausdorff dimension of the set. We further comment on random homogeneous and V -variable sets and the removal of overlap conditions.


Sign in / Sign up

Export Citation Format

Share Document