Salt Screening and Selection

Author(s):  
Tian Wu ◽  
Darren L. Reid ◽  
David J. Semin
Keyword(s):  
2012 ◽  
Vol 35 (8) ◽  
pp. 1001-1010 ◽  
Author(s):  
John Reilly ◽  
Penny Wright ◽  
Jay Larrow ◽  
Thierry Mann ◽  
Joseph Twomey ◽  
...  
Keyword(s):  

2018 ◽  
Vol 107 (7) ◽  
pp. 1870-1878 ◽  
Author(s):  
Kazue Kimura ◽  
Saho Onishi ◽  
Kei Moriyama

ACS Omega ◽  
2018 ◽  
Vol 3 (7) ◽  
pp. 8365-8377 ◽  
Author(s):  
Vikas Kumar ◽  
Sandip B. Bharate ◽  
Ram A. Vishwakarma ◽  
Sonali S. Bharate

Polymers ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1242 ◽  
Author(s):  
Sahin Buyukdagli ◽  
Jalal Sarabadani ◽  
Tapio Ala-Nissila

Sensitive sequencing of biopolymers by nanopore-based translocation techniques requires an extension of the time spent by the molecule in the pore. We develop an electrostatic theory of polymer translocation to show that the translocation time can be extended via the dielectric trapping of the polymer. In dilute salt conditions, the dielectric contrast between the low permittivity membrane and large permittivity solvent gives rise to attractive interactions between the c i s and t r a n s portions of the polymer. This self-attraction acts as a dielectric trap that can enhance the translocation time by orders of magnitude. We also find that electrostatic interactions result in the piecewise scaling of the translocation time τ with the polymer length L. In the short polymer regime L ≲ 10 nm where the external drift force dominates electrostatic polymer interactions, the translocation is characterized by the drift behavior τ ∼ L 2 . In the intermediate length regime 10 nm ≲ L ≲ κ b − 1 where κ b is the Debye–Hückel screening parameter, the dielectric trap takes over the drift force. As a result, increasing polymer length leads to quasi-exponential growth of the translocation time. Finally, in the regime of long polymers L ≳ κ b − 1 where salt screening leads to the saturation of the dielectric trap, the translocation time grows linearly as τ ∼ L . This strong departure from the drift behavior highlights the essential role played by electrostatic interactions in polymer translocation.


2006 ◽  
Vol 95 (11) ◽  
pp. 2361-2372 ◽  
Author(s):  
Robert B. Hammond ◽  
Rose S. Hashim ◽  
Caiyun Ma ◽  
Kevin J. Roberts

2015 ◽  
Vol 67 (6) ◽  
pp. 812-822 ◽  
Author(s):  
Ana Fernández Casares ◽  
W. Mieke Nap ◽  
Glòria Ten Figás ◽  
Pieter Huizenga ◽  
Richard Groot ◽  
...  
Keyword(s):  

2012 ◽  
Vol 39 (1) ◽  
pp. 29-38 ◽  
Author(s):  
Benjamin M. Collman ◽  
Jonathan M. Miller ◽  
Christopher Seadeek ◽  
Julie A. Stambek ◽  
Anthony C. Blackburn

2015 ◽  
Vol 496 (1) ◽  
pp. 107-116 ◽  
Author(s):  
Pin Dong ◽  
Ling Lin ◽  
Yongcheng Li ◽  
Zhengwei Huang ◽  
Tianqun Lang ◽  
...  

Lab on a Chip ◽  
2011 ◽  
Vol 11 (22) ◽  
pp. 3829 ◽  
Author(s):  
Michael R. Thorson ◽  
Sachit Goyal ◽  
Benjamin R. Schudel ◽  
Charles F. Zukoski ◽  
Geoff G. Z. Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document