salt screening
Recently Published Documents


TOTAL DOCUMENTS

28
(FIVE YEARS 6)

H-INDEX

11
(FIVE YEARS 2)

Crystals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 89
Author(s):  
Mónica Benito ◽  
Miquel Barceló-Oliver ◽  
Antonio Frontera ◽  
Elies Molins

Six new multicomponent solids of 9-ethyladenine and oxalic acid have been detected and characterized. The salt screening has been performed by mechanochemical and solvent crystallization processes. Single crystals of the anhydrous salts in 1:1 and 2:1 nucleobase:coformer molar ratio were obtained by solution crystallization and elucidated by single-crystal X-ray analysis. The supramolecular interactions observed in these solids have been studied using density functional theory (DFT) calculations and characterized by the quantum theory of “atoms in molecules” (QTAIM) and the noncovalent interaction plot (NCIPlot) index methods. The energies of the H-bonding networks observed in the solid state of the anhydrous salts in 1:1 and 2:1 nucleobase:coformer are reported, disclosing the strong nature of the charge assisted NH···O hydrogen bonds and also the relative importance of ancillary C–H··O H-bonds.


Author(s):  
Tian Wu ◽  
Darren L. Reid ◽  
David J. Semin
Keyword(s):  

Author(s):  
Arash Emdadi ◽  
Jamie Hestekin ◽  
Lauren F. Greenlee

As a renewable energy conversion technology, reverse electrodialysis (RED) can be employed for generating electricity, where two solutions with different salt concentrations are mixed together from membrane-separated streams. In addition...


2020 ◽  
Vol 57 (4) ◽  
pp. 277-287
Author(s):  
Sushma M Awaji ◽  
Prashantkumar S Hanjagi ◽  
Pushpa BN ◽  
Sashidhar VR

Crop productivity is greatly affected by soil salinity; therefore, improvement in salinity tolerance of crops is a major goal in salt-tolerant breeding. The Salt Overly Sensitive (SOS) signal-transduction pathway plays a key role in ion homeostasis and salt tolerance in plants. In plants pumping of Na+ from the root cells is mediated by the plasma membrane Na+/H+ antiporter (SOS1) which plays important role in preventing the accumulation of toxic levels of Na+ in cytosol. In the present study, OsSOS1 (NHX7), gene was overexpressed in rice (var-Vikas) by Agrobacterium mediated In Planta transformation technique. To screen putative T1 plants for salt tolerance, stringent salt screening test was followed and root and shoot growth of transformants were used as selection criterion. Some of the putative transgenics showed significantly higher root growth compared to wild type. To confirm the presence of transgene in putative T1 transgenic plants, PCR based approach was followed using genomic DNA. The result showed that 16 % of the selected seedlings from the stringent salt screening test were PCR positives. Five selected lines were positive for RT-PCR analysis. Physiological studies such as chlorophyll content, membrane permeability, cell viability and sodium /potassium content analysis were also conducted to assess their levels of tolerance. Some of the T1 transformants showed lower percent reduction in chlorophyll content and less membrane leakage, higher cell viability and maintained higher K/Na ratio after NaCl treatment compared to wild type. These results clearly demonstrate that transgenic rice plants overexpressing OsSOS1 have better salt-tolerance. This could be attributed to extrusion of excess Na+ from cytosol into the apoplast and thereby reducing the toxic effects of Na+in the cell.


IUCrJ ◽  
2019 ◽  
Vol 6 (1) ◽  
pp. 145-151 ◽  
Author(s):  
Martin Babor ◽  
Philipp P. Nievergelt ◽  
Jan Čejka ◽  
Vít Zvoníček ◽  
Bernhard Spingler

Multicomponent solid forms of active pharmaceutical ingredients represent a modern method of tuning their physicochemical properties. Typically, salts are the most commonly used multicomponent solid form in the pharmaceutical industry. More than 38% are formulated as organic cations. Salt screening is an essential but demanding step when identifying the most appropriate formulation. The microbatch under-oil crystallization technique of proteins has been combined with the previously developed high-throughput vapour-diffusion screening for use as a novel method of primary salt screening of organic cations. The procedure allows the set up of about 100 crystallization experiments per 30 min. This requires between 17 and 564 mg of screened cationic active pharmaceutical ingredients, which were of moderate to very high water solublity. Five distinct organic salts, three of them diverse active pharmaceutical compounds or the other enantiomer thereof, in the form of chloride salts were tested. The screening was extremely successful; at least two new single-crystal structures could be obtained for each particular compound and many more salts as single crystals were formed compared with our previous vapour-diffusion method.


Polymers ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1242 ◽  
Author(s):  
Sahin Buyukdagli ◽  
Jalal Sarabadani ◽  
Tapio Ala-Nissila

Sensitive sequencing of biopolymers by nanopore-based translocation techniques requires an extension of the time spent by the molecule in the pore. We develop an electrostatic theory of polymer translocation to show that the translocation time can be extended via the dielectric trapping of the polymer. In dilute salt conditions, the dielectric contrast between the low permittivity membrane and large permittivity solvent gives rise to attractive interactions between the c i s and t r a n s portions of the polymer. This self-attraction acts as a dielectric trap that can enhance the translocation time by orders of magnitude. We also find that electrostatic interactions result in the piecewise scaling of the translocation time τ with the polymer length L. In the short polymer regime L ≲ 10 nm where the external drift force dominates electrostatic polymer interactions, the translocation is characterized by the drift behavior τ ∼ L 2 . In the intermediate length regime 10 nm ≲ L ≲ κ b − 1 where κ b is the Debye–Hückel screening parameter, the dielectric trap takes over the drift force. As a result, increasing polymer length leads to quasi-exponential growth of the translocation time. Finally, in the regime of long polymers L ≳ κ b − 1 where salt screening leads to the saturation of the dielectric trap, the translocation time grows linearly as τ ∼ L . This strong departure from the drift behavior highlights the essential role played by electrostatic interactions in polymer translocation.


ACS Omega ◽  
2018 ◽  
Vol 3 (7) ◽  
pp. 8365-8377 ◽  
Author(s):  
Vikas Kumar ◽  
Sandip B. Bharate ◽  
Ram A. Vishwakarma ◽  
Sonali S. Bharate

2018 ◽  
Vol 107 (7) ◽  
pp. 1870-1878 ◽  
Author(s):  
Kazue Kimura ◽  
Saho Onishi ◽  
Kei Moriyama

Author(s):  
Guoshun Zhang ◽  
Li Zhang ◽  
Dezhi Yang ◽  
Na Zhang ◽  
Lan He ◽  
...  

With the aim of improving the solubility of ciprofloxacin, polybasic organic acids were utilized to react with ciprofloxacin in different stoichiometric proportions. The use of the solvent drop grinding (SDG) method, as well as the solvent evaporation method, resulted in the crystalline salts ciprofloxacin/fumaric acid (1:1, 2:1), ciprofloxacin/maleic acid (1:1) and ciprofloxacin/citric acid (2:1). The solubilities of these salts in pure water (pH 7.0) were determined using high-performance liquid chromatography (HPLC) at 310 K, with the salts showing considerably greater solubility than ciprofloxacin itself and, interestingly, ciprofloxacin/fumaric acid (2:1) being more soluble than ciprofloxacin/fumaric acid (1:1). Intrigued by this phenomenon, we undertook a comparison of the crystal structures of the salts: the three-dimensional sandwich-like structure observed in the 2:1 salt indicates that the preferred stacking may be a factor in increasing the solubility of ciprofloxacin.


Sign in / Sign up

Export Citation Format

Share Document