Anti-hypertensive drugs as disease-modifying agents for Parkinson's disease: evidence from observational studies and clinical trials

Author(s):  
Karen Rees ◽  
Rebecca Stowe ◽  
Smitaa Patel ◽  
Natalie Ives ◽  
Kieran Breen ◽  
...  
2017 ◽  
Vol 2017 ◽  
pp. 1-14 ◽  
Author(s):  
Liang Song ◽  
Meng-Bei Xu ◽  
Xiao-Li Zhou ◽  
Dao-pei Zhang ◽  
Shu-ling Zhang ◽  
...  

To date, no drug has been proven to be neuroprotective or disease-modifying for Parkinson’s disease (PD) in clinical trials. Here, we aimed to assess preclinical evidence of Ginsenosides-Rg1 (G-Rg1), a potential neuroprotectant, for experimental PD and its possible mechanisms. Eligible studies were identified by searching six electronic databases from their inception to August 2016. Twenty-five eligible studies involving 516 animals were identified. The quality score of these studies ranged from 3 to 7. Compared with the control group, two out of the 12 studies of MPTP-induced PD showed significant effects of G-Rg1 for improving the rotarod test (P<0.01), two studies for improving the swim-score values (P<0.01), six studies for improving the level of TH protein expression (P<0.01), and two studies for increasing the expression of TH mRNA in the substantia nigra of mice (P<0.01). The studies reported that G-Rg1 exerted potential neuroprotective effects on PD model through different mechanisms as antineuroinflammatory activities (n=10), antioxidant stress (n=3), and antiapoptosis (n=11). In conclusion, G-Rg1 exerted potential neuroprotective functions against PD largely by antineuroinflammatory, antioxidative, and antiapoptotic effects. G-Rg1 as a promising neuroprotectant for PD needs further confirmation by clinical trials.


2020 ◽  
Author(s):  
Daphna Laifenfeld ◽  
Chen Yanover ◽  
Michal Ozery-Flato ◽  
Oded Shaham ◽  
Michal Rozen-Zvi ◽  
...  

AbstractReal-world healthcare data hold the potential to identify therapeutic solutions for progressive diseases by efficiently pinpointing safe and efficacious repurposing drug candidates. This approach circumvents key early clinical development challenges, particularly relevant for neurological diseases, concordant with the vision of the 21stCentury Cures Act. However, to-date, these data have been utilized mainly for confirmatory purposes rather than as drug discovery engines. Here, we demonstrate the usefulness of real-world data in identifying drug repurposing candidates for disease-modifying effects, specifically candidate marketed drugs that exhibit beneficial effects on Parkinson’s disease (PD) progression. We performed an observational study in cohorts of ascertained PD patients extracted from two large medical databases, Explorys SuperMart (N=88,867) and IBM MarketScan Research Databases (N=106,395); and applied two conceptually different, well-established causal inference methods to estimate the effect of hundreds of drugs on delaying dementia onset as a proxy for slowing PD progression. Using this approach, we identified two drugs that manifested significant beneficial effects on PD progression in both datasets: rasagiline, narrowly indicated for PD motor symptoms; and zolpidem, a psycholeptic. Each confers its effects through distinct mechanisms, which we explored via a comparison of estimated effects within the drug classification ontology. We conclude that analysis of observational healthcare data, emulating otherwise costly, large, and lengthy clinical trials, can highlight promising repurposing candidates, to be validated in prospective registration trials, for common, late-onset progressive diseases for which disease-modifying therapeutic solutions are scarce.


2019 ◽  
Vol 11 (520) ◽  
pp. eaba1659 ◽  
Author(s):  
Valina L. Dawson ◽  
Ted M. Dawson

To date, there is no disease-modifying therapy for Parkinson’s disease; however, promising new agents have advanced into clinical trials.


2017 ◽  
Vol 32 (3) ◽  
pp. 319-324 ◽  
Author(s):  
Alberto J. Espay ◽  
Michael A. Schwarzschild ◽  
Caroline M. Tanner ◽  
Hubert H. Fernandez ◽  
David K. Simon ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Daphna Laifenfeld ◽  
Chen Yanover ◽  
Michal Ozery-Flato ◽  
Oded Shaham ◽  
Michal Rosen-Zvi ◽  
...  

Real-world healthcare data hold the potential to identify therapeutic solutions for progressive diseases by efficiently pinpointing safe and efficacious repurposing drug candidates. This approach circumvents key early clinical development challenges, particularly relevant for neurological diseases, concordant with the vision of the 21st Century Cures Act. However, to-date, these data have been utilized mainly for confirmatory purposes rather than as drug discovery engines. Here, we demonstrate the usefulness of real-world data in identifying drug repurposing candidates for disease-modifying effects, specifically candidate marketed drugs that exhibit beneficial effects on Parkinson’s disease (PD) progression. We performed an observational study in cohorts of ascertained PD patients extracted from two large medical databases, Explorys SuperMart (N = 88,867) and IBM MarketScan Research Databases (N = 106,395); and applied two conceptually different, well-established causal inference methods to estimate the effect of hundreds of drugs on delaying dementia onset as a proxy for slowing PD progression. Using this approach, we identified two drugs that manifested significant beneficial effects on PD progression in both datasets: rasagiline, narrowly indicated for PD motor symptoms; and zolpidem, a psycholeptic. Each confers its effects through distinct mechanisms, which we explored via a comparison of estimated effects within the drug classification ontology. We conclude that analysis of observational healthcare data, emulating otherwise costly, large, and lengthy clinical trials, can highlight promising repurposing candidates, to be validated in prospective registration trials, beneficial against common, late-onset progressive diseases for which disease-modifying therapeutic solutions are scarce.


Sign in / Sign up

Export Citation Format

Share Document