scholarly journals Measuring relative utilization of aerobic glycolysis in breast cancer cells by positional isotopic discrimination

FEBS Letters ◽  
2016 ◽  
Vol 590 (18) ◽  
pp. 3179-3187 ◽  
Author(s):  
Da-Qing Yang ◽  
Dana M. Freund ◽  
Benjamin R. E. Harris ◽  
Defeng Wang ◽  
Margot P. Cleary ◽  
...  
2020 ◽  
Author(s):  
Shoukai Zong ◽  
Wei Dai ◽  
Wencheng Fang ◽  
Xiangting Guo ◽  
Kai Wang

Abstract Objective This study aimed to investigate the effect of SIK2 on cisplatin resistance induced by aerobic glycolysis in breast cancer cells and its potential mechanism. Methods qRT-PCR and Western blot were used to detect SIK2 mRNA and protein levels. Cisplatin (DDP) resistant cell lines of breast cancer cells were established, CCK-8 was used to measure and evaluate the viability, and Transwell was used to evaluate the cell invasion capability. Flow cytometry was adopted to evaluate the apoptosis rate. The glycolysis level was evaluated by measuring glucose consumption and lactic acid production. The protein levels of p-PI3K, p- protein kinase B (Akt) and p-mTOR were determined by western blot. Results SIK2 is highly expressed in breast cancer tissues and cells compared with adjacent tissues and normal human breast epithelial cells, and has higher diagnostic value for breast cancer. Silencing SIK2 expression can inhibit proliferation and invasion of breast cancer cells and induce their apoptosis. In addition, SIK2 knockdown inhibits glycolysis, reverses the resistance of drug-resistant cells to cisplatin, and inhibits PI3K/AKT/mTOR signaling pathway. When LY294002 is used to inhibit PI3K/AKT/mTOR signaling pathway, the effect of Sh-SIK2 on aerobic glycolysis of breast cancer cells can be reversed. Conclusion SIK2 can promote cisplatin resistance caused by aerobic glycolysis of breast cancer cells through PI3K/AKT/mTOR signaling pathway, which may be a new target to improve cisplatin resistance of breast cancer cells.


Oncogene ◽  
2019 ◽  
Vol 38 (28) ◽  
pp. 5551-5565 ◽  
Author(s):  
Mengjia He ◽  
Qianni Jin ◽  
Cong Chen ◽  
Yifeng Liu ◽  
Xiangsen Ye ◽  
...  

PLoS ONE ◽  
2015 ◽  
Vol 10 (7) ◽  
pp. e0132285 ◽  
Author(s):  
Yu Mi Woo ◽  
Yubin Shin ◽  
Eun Ji Lee ◽  
Sunyoung Lee ◽  
Seung Hun Jeong ◽  
...  

2020 ◽  
Author(s):  
Ya Fan ◽  
Jia Wang ◽  
Yuemei Xu ◽  
Yipin Wang ◽  
Tao Song ◽  
...  

Abstract Background: Our previous studies have shown that the E3 ubiquitin ligase of HMG-CoA reductase degradation 1 (HRD1) functions as a tumor suppressor, as overexpression of HRD1 suppressed breast cancer proliferation and invasion. However, its role in breast cancer cell glucose metabolism was unclear. Here, our aim was to uncover the role and molecular mechanisms of HRD1 in regulating aerobic glycolysis in breast cancer. Methods: The effect of HRD1 on robic glycolysis in breast cancer cells were assessed. Then the proliferation, colony formation ability, invasion and migration of breast cancer cells were evaluated. The relationship between HRD1 and PFKP was validated by Mass spectrometry analysis, immunofluorescence and co-immunoprecipitation. The level of PFKP ubiquitination was measured using ubiquitylation assay. Furthermore, the tumor growth and metastasis in mice xenografts were observed. Results: We found that upregulation of HRD1 clearly decreased aerobic glycolysis, and subsequently inhibited breast cancer proliferation and invasion. Mass spectrometry analysis results revealed a large HRD1 interactome, which included PFKP (platelet isoform of phosphofructokinase), a critical enzyme involved in the Warburg Effect in breast cancer. Mechanistically, HRD1 interacted and colocalized with PFKP in the cytoplasm, targeted PFKP for ubiquitination and degradation, and ultimately reduced PFKP expression and activity in breast cancer cells. HRD1 inhibited breast cancer growth and metastasis in vivo through a PFKP-dependent wayConclusions: Our findings reveal a new regulatory role of HRD1 in Warburg effect and provide a key contributor in breast cancer metabolism.


Neoplasma ◽  
2020 ◽  
Author(s):  
Yuanping Chen ◽  
Lu Cai ◽  
Xiaoqing Guo ◽  
Zelei Li ◽  
Xiaohong Liao ◽  
...  

2020 ◽  
Author(s):  
Ya Fan ◽  
Wang Jia ◽  
Yuemei Xu ◽  
Yipin Wang ◽  
Tao Song ◽  
...  

Abstract Background: Our previous studies have shown that the E3 ubiquitin ligase of HMG-CoA reductase degradation 1 (HRD1) functions as a tumor suppressor, as overexpression of HRD1 suppressed breast cancer proliferation and invasion. However, its role in breast cancer cell glucose metabolism was unclear. Here, our aim was to uncover the role and molecular mechanisms of HRD1 in regulating aerobic glycolysis in breast cancer. Methods: The effect of HRD1 on robic glycolysis in breast cancer cells were assessed. Then the proliferation, colony formation ability, invasion and migration of breast cancer cells were evaluated. The relationship between HRD1 and PFKP was validated by Mass spectrometry analysis, immunofluorescence and co-immunoprecipitation. The level of PFKP ubiquitination was measured using ubiquitylation assay. Furthermore, the tumor growth in vivo were observed by subcutaneous tumorigenesis in nude mice. Results: We found that upregulation of HRD1 clearly decreased aerobic glycolysis, and subsequently inhibited breast cancer proliferation and invasion. Mass spectrometry analysis results revealed a large HRD1 interactome, which included PFKP (platelet isoform of phosphofructokinase), a critical enzyme involved in the Warburg Effect in breast cancer. Mechanistically, HRD1 interacted and colocalized with PFKP in the cytoplasm, targeted PFKP for ubiquitination and degradation, and ultimately reduced PFKP expression and activity in breast cancer cells. Conclusions: Our findings reveal a new regulatory role of HRD1 in Warburg effect and provide a key contributor in breast cancer metabolism.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Ya Fan ◽  
Jia Wang ◽  
Yuemei Xu ◽  
Yipin Wang ◽  
Tao Song ◽  
...  

Abstract Background Our previous studies have shown that the E3 ubiquitin ligase of HMG-CoA reductase degradation 1 (HRD1) functions as a tumor suppressor, as overexpression of HRD1 suppressed breast cancer proliferation and invasion. However, its role in breast cancer cell glucose metabolism was unclear. Here, our aim was to uncover the role and molecular mechanisms of HRD1 in regulating aerobic glycolysis in breast cancer. Methods The effect of HRD1 on robic glycolysis in breast cancer cells were assessed. Then the proliferation, colony formation ability, invasion and migration of breast cancer cells were evaluated. The relationship between HRD1 and PFKP was validated by Mass spectrometry analysis, immunofluorescence and co-immunoprecipitation. The level of PFKP ubiquitination was measured using ubiquitylation assay. Furthermore, the tumor growth and metastasis in mice xenografts were observed. Results We found that upregulation of HRD1 clearly decreased aerobic glycolysis, and subsequently inhibited breast cancer proliferation and invasion. Mass spectrometry analysis results revealed a large HRD1 interactome, which included PFKP (platelet isoform of phosphofructokinase), a critical enzyme involved in the Warburg Effect in breast cancer. Mechanistically, HRD1 interacted and colocalized with PFKP in the cytoplasm, targeted PFKP for ubiquitination and degradation, and ultimately reduced PFKP expression and activity in breast cancer cells. HRD1 inhibited breast cancer growth and metastasis in vivo through a PFKP-dependent way Conclusions Our findings reveal a new regulatory role of HRD1 in Warburg effect and provide a key contributor in breast cancer metabolism. Graphic abstract


Sign in / Sign up

Export Citation Format

Share Document