scholarly journals A 3‐D variational assimilation scheme in coupled transport‐biogeochemical models: Forecast of Mediterranean biogeochemical properties

2014 ◽  
Vol 119 (1) ◽  
pp. 200-217 ◽  
Author(s):  
Anna Teruzzi ◽  
Srdjan Dobricic ◽  
Cosimo Solidoro ◽  
Gianpiero Cossarini
2017 ◽  
Vol 10 (1) ◽  
pp. 85-104 ◽  
Author(s):  
Hector Simon Benavides Pinjosovsky ◽  
Sylvie Thiria ◽  
Catherine Ottlé ◽  
Julien Brajard ◽  
Fouad Badran ◽  
...  

Abstract. The SECHIBA module of the ORCHIDEE land surface model describes the exchanges of water and energy between the surface and the atmosphere. In the present paper, the adjoint semi-generator software called YAO was used as a framework to implement a 4D-VAR assimilation scheme of observations in SECHIBA. The objective was to deliver the adjoint model of SECHIBA (SECHIBA-YAO) obtained with YAO to provide an opportunity for scientists and end users to perform their own assimilation. SECHIBA-YAO allows the control of the 11 most influential internal parameters of the soil water content, by observing the land surface temperature or remote sensing data such as the brightness temperature. The paper presents the fundamental principles of the 4D-VAR assimilation, the semi-generator software YAO and a large number of experiments showing the accuracy of the adjoint code in different conditions (sites, PFTs, seasons). In addition, a distributed version is available in the case for which only the land surface temperature is observed.


Author(s):  
Y. Liang ◽  
Z. Zang ◽  
W. You

A three-dimensional variational data assimilation scheme is designed for satellite AOD based on the IMPROVE (Interagency Monitoring of Protected Visual Environments) equation. The observation operator that simulates AOD from the control variables is established by the IMPROVE equation. All of the 16 control variables in the assimilation scheme are the mass concentrations of aerosol species from the Model for Simulation Aerosol Interactions and Chemistry scheme, so as to take advantage of this scheme in providing comprehensive analyses of species concentrations and size distributions as well as be calculating efficiently. The assimilation scheme can save computational resources as the IMPROVE equation is a quadratic equation. A single-point observation experiment shows that the information from the single-point AOD is effectively spread horizontally and vertically.


Sign in / Sign up

Export Citation Format

Share Document