scholarly journals Clues to the cause of the 2011-2013 Campi Flegrei caldera unrest, Italy, from continuous GPS data

2014 ◽  
Vol 41 (9) ◽  
pp. 3081-3088 ◽  
Author(s):  
Antonella Amoruso ◽  
Luca Crescentini ◽  
Ilaria Sabbetta ◽  
Prospero De Martino ◽  
Francesco Obrizzo ◽  
...  
2019 ◽  
Vol 188 ◽  
pp. 108-122 ◽  
Author(s):  
Claudia Troise ◽  
Giuseppe De Natale ◽  
Roberto Schiavone ◽  
Renato Somma ◽  
Roberto Moretti

2019 ◽  
Vol 20 (11) ◽  
pp. 5544-5555 ◽  
Author(s):  
F. Giudicepietro ◽  
G. Chiodini ◽  
S. Caliro ◽  
W. De Cesare ◽  
A. M. Esposito ◽  
...  

2021 ◽  
Vol 13 (14) ◽  
pp. 2725
Author(s):  
Prospero De Martino ◽  
Mario Dolce ◽  
Giuseppe Brandi ◽  
Giovanni Scarpato ◽  
Umberto Tammaro

The Neapolitan volcanic area includes three active and high-risk volcanoes: Campi Flegrei caldera, Somma–Vesuvius, and Ischia island. The Campi Flegrei volcanic area is a typical example of a resurgent caldera, characterized by intense uplift periods followed by subsidence phases (bradyseism). After about 21 years of subsidence following the 1982–1984 unrest, a new inflation period started in 2005 and, with increasing rates over time, is ongoing. The overall uplift from 2005 to December 2019 is about 65 cm. This paper provides the history of the recent Campi Flegrei caldera unrest and an overview of the ground deformation patterns of the Somma–Vesuvius and Ischia volcanoes from continuous GPS observations. In the 2000–2019 time span, the GPS time series allowed the continuous and accurate tracking of ground and seafloor deformation of the whole volcanic area. With the aim of improving the research on volcano dynamics and hazard assessment, the full dataset of the GPS time series from the Neapolitan volcanic area from January 2000 to December 2019 is presented and made available to the scientific community.


2006 ◽  
Vol 269 (1) ◽  
pp. 25-45 ◽  
Author(s):  
G. De Natale ◽  
C. Troise ◽  
F. Pingue ◽  
G. Mastrolorenzo ◽  
L. Pappalardo ◽  
...  

2021 ◽  
Author(s):  
Figen Eskikoy ◽  
Semih Ergintav ◽  
Uğur Dogan ◽  
Seda Özarpacı ◽  
Alpay Özdemir ◽  
...  

<p>On 2020 October 30, an M<sub>w</sub>6.9 earthquake struck offshore Samos Island. Severe structural damages were observed in Greek Islands and city of Izmir (Turkey). 114 people lost their lives and more than a thousand people were injured in Turkey. The earthquake triggered local tsunami. Significant seismic activity occurred in this region following the earthquake and ~1800 aftershocks (M>1) were recorded by KOERI within the first three days. In this study, we analyze the slip distribution and aftershocks of the 2020 earthquake.</p><p>For the aftershock relocations, the continuous waveforms were collected from NOA, Disaster and Emergency Management Authority of Turkey (AFAD) and KOERI networks. The database   was created based on merged catalogs from AFAD and KOERI. For estimating optimized aftershock location distribution, the P and S phases of the aftershocks are picked manually and relocated with double difference algorithm. In addition, source mechanisms of aftershocks M>4 are obtained from regional body and surface waveforms.</p><p>The surface deformation of the earthquake was obtained from both descending and ascending orbits of the Sentinel-1 A/B and ALOS2 satellites. Since the rupture zone is beneath the Gulf of Kusadası, earthquake related deformation in the interferograms can only be observed on the northern part of the Samos Island. We processed all possible pairs chose the image pairs with the lowest noise level.</p><p>In this study, we used 25 continuous GPS stations which are compiled from TUSAGA-Aktif in Turkey and NOANET in Greece. In addition to continuous GPS data, on 2020 November 1, GPS survey was initiated and the earthquake deformation was measured on 10 GNSS campaign sites (TUTGA), along onshore of Turkey.</p><p>The aim of this study is to estimate the spatial and temporal rupture evolution of the earthquake from geodetic data jointly with near field displacement waveforms. To do so, we use the Bayesian Earthquake Analysis Tool (BEAT).</p><p>As a first step of the study, rectangular source parameters were estimated by using GPS data. In order to estimate the slip distribution, we used both ascending and descending tracks of Sentinel-1 data, ALOS2 and GPS displacements. In our preliminary geodetic data based finite fault model, we used the results of focal mechanism and GPS data inversion solutions for the initial fault plane parameters. The slip distribution results indicate that earthquake rupture is ~35 km long and the maximum slip is ~2 m normal slip along a north dipping fault plane. This EW trending, ~45° north dipping normal faulting system consistent with this tectonic regime in the region. This seismically active area is part of a N-S extensional regime and controlled primarily by normal fault systems.</p><p><strong>Acknowledgements</strong></p><p>This work is supported by the Turkish Directorate of Strategy and Budget under the TAM Project number 2007K12-873.</p>


2016 ◽  
Vol 43 (20) ◽  
pp. 10,710-10,719 ◽  
Author(s):  
Mahesh N. Shrivastava ◽  
Gabriel González ◽  
Marcos Moreno ◽  
Mohamed Chlieh ◽  
Pablo Salazar ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document