chile earthquake
Recently Published Documents


TOTAL DOCUMENTS

287
(FIVE YEARS 35)

H-INDEX

38
(FIVE YEARS 3)

2021 ◽  
Vol 267 ◽  
pp. 112733
Author(s):  
Bochen Zhang ◽  
Xiaoli Ding ◽  
Falk Amelung ◽  
Chisheng Wang ◽  
Wenbin Xu ◽  
...  

2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Emma P. Hocking ◽  
Ed Garrett ◽  
Diego Aedo ◽  
Matías Carvajal ◽  
Daniel Melnick

AbstractAssessing tsunami hazards commonly relies on historical accounts of past inundations, but such chronicles may be biased by temporal gaps due to historical circumstances. As a possible example, the lack of reports of tsunami inundation from the 1737 south-central Chile earthquake has been attributed to either civil unrest or a small tsunami due to deep fault slip below land. Here we conduct sedimentological and diatom analyses of tidal marsh sediments within the 1737 rupture area and find evidence for a locally-sourced tsunami consistent in age with this event. The evidence is a laterally-extensive sand sheet coincident with abrupt, decimetric subsidence. Coupled dislocation-tsunami models place the causative fault slip mostly offshore rather than below land. Whether associated or not with the 1737 earthquake, our findings reduce the average recurrence interval of tsunami inundation derived from historical records alone, highlighting the importance of combining geological and historical records in tsunami hazard assessment.


Author(s):  
Francisco Acuña ◽  
Gonzalo A. Montalva ◽  
Daniel Melnick

Abstract Time-dependent earthquake forecast depends on the frequency and number of past events and time since the last event. Unfortunately, only a few past events are historically documented along subduction zones where forecasting relies mostly on paleoseismic catalogs. We address the role of dating uncertainty and completeness of paleoseismic catalogs on probabilistic estimates of forthcoming earthquakes using a 3.6-ka-long catalog including 11 paleoseismic and 1 historic (Mw≥8.6) earthquakes that preceded the great 1960 Chile earthquake. We set the clock to 1940 and estimate the conditional probability of a future event using five different recurrence models. We find that the Weibull model predicts the highest forecasting probabilities of 44% and 72% in the next 50 and 100 yr, respectively. Uncertainties in earthquake chronologies due to missing events and dating uncertainties may produce changes in forecast probabilities of up to 50%. Our study provides a framework to use paleoseismic records in seismic hazard assessments including epistemic uncertainties.


Solid Earth ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 2523-2537
Author(s):  
Cedric Twardzik ◽  
Mathilde Vergnolle ◽  
Anthony Sladen ◽  
Louisa L. H. Tsang

Abstract. It is well-established that the post-seismic slip results from the combined contribution of seismic and aseismic processes. However, the partitioning between these two modes of deformation remains unclear due to the difficulty of inferring detailed and robust descriptions of how both evolve in space and time. This is particularly true just after a mainshock when both processes are expected to be the strongest. Using state-of-the-art sub-daily processing of GNSS data, along with dense catalogs of aftershocks obtained from template-matching techniques, we unravel the spatiotemporal evolution of post-seismic slip and aftershocks over the first 12 h following the 2015 Mw 8.3 Illapel, Chile, earthquake. We show that the very early post-seismic activity occurs over two regions with distinct behaviors. To the north, post-seismic slip appears to be purely aseismic and precedes the occurrence of late aftershocks. To the south, aftershocks are the primary cause of the post-seismic slip. We suggest that this difference in behavior could be inferred only a few hours after the mainshock. We finish by showing that this information can potentially be obtained very rapidly after a large earthquake, which could prove to be useful in forecasting the long-term spatial pattern of aftershocks.


Author(s):  
J C Savage

Summary Based on numerous studies of the relevant geodetic data, a low-angle thrusting mechanism has been assigned to the 1960 Chile earthquake. Kanamori, Rivera, and Lambotte recently suggested that a component of dextral slip comparable to the thrusting be included in the mechanism to satisfy long-period, teleseismic observations. The absence of geodetic evidence for that huge strike-slip component is the subject of this comment. The geodetic data are largely measurements of coseismic uplift associated with the earthquake but include 8 measurements of the coseismic change in shear strain. Because strike slip produces relatively little uplift except near the end points of the rupture, identification of that strike-slip component in the geodetic data depends upon the measured, shear-strain change. I consider elastic, half-space models of oblique slip on the plate interface possibly supplemented by simultaneous dextral slip on the nearby, intra-arc Liquiñe-Ofqui Fault Zone. Slip is assumed to be uniform along strike. The best fits to the geodetic data for these models furnish little evidence for strike slip on those structures. To satisfy the long-period, teleseismic data, Kanamori et al. proposed 6 examples, each of which requires a large amount of dextral slip. Because the long-period, teleseismic data do not define the slip distributions, I have used the best fits of those examples to the geodetic data to define those distributions. The large thrusting near the deformation front required by those slip distributions implies large uplift there, contrary to the uplift inferred from the inversion of tsunami data. However, an acceptable fit to the geodetic data and the tsunami data for the 6 examples suggested by Kanamori et al. can be obtained if the seismic moments specified by them are reduced by a factor ∼1.8, a factor within the uncertainties in estimating seismic moments of the 1960 Chile earthquake. The presence of strike slip in those reduced-moment examples despite the lack of geodetic evidence for strike slip is due to a remarkable coincidence that requires careful balancing of contributions from the shallower (depths < 70 km) coseismic sources against those from the deeper coseismic sources to nullify the geodetic evidence for strike slip. Such balancing is possible, but it is remarkable that the balancing is so nearly perfect that it nullifies the geodetic evidence for strike slip and thereby confounds the interpretation of the geodetic data.


Author(s):  
Farhad Dashti ◽  
Rajesh Dhakal ◽  
Stefano Pampanin

Observations of out-of-plane (OOP) instability in the 2010 Chile earthquake and in the 2011 Christchurch earthquake resulted in concerns about the current design provisions of structural walls. This mode of failure was previously observed in the experimental response of some wall specimens subjected to in-plane loading. Therefore, the postulations proposed for prediction of the limit states corresponding to OOP instability of rectangular walls are generally based on stability analysis under in-plane loading only. These approaches address stability of a cracked wall section when subjected to compression, thereby considering the level of residual strain developed in the reinforcement as the parameter that prevents timely crack closure of the wall section and induces stability failure. The New Zealand code requirements addressing the OOP instability of structural walls are based on the assumptions used in the literature and the analytical methods proposed for mathematical determination of the critical strain values. In this study, a parametric study is conducted using a numerical model capable of simulating OOP instability of rectangular walls to evaluate sensitivity of the OOP response of rectangular walls to variation of different parameters identified to be governing this failure mechanism. The effects of wall slenderness (unsupported height-to-thickness) ratio, longitudinal reinforcement ratio of the boundary regions and length on the OOP response of walls are evaluated. A clear trend was observed regarding the influence of these parameters on the initiation of OOP displacement, based on which simple equations are proposed for prediction of OOP instability in rectangular walls.


2021 ◽  
Vol 240 ◽  
pp. 112093
Author(s):  
José A. Gallardo ◽  
Juan C. de la Llera ◽  
Hernán Santa María ◽  
Matías F. Chacón

2021 ◽  
Author(s):  
Norio Matsumoto ◽  
Osamu Kamigaichi

Abstract We conducted in-situ calibration of fifteen multicomponent borehole strainmeters deployed in and around the expected focal zones of the Nankai megathrust earthquake. The in-situ calibration method compares tidal strain observed by the borehole strainmeters with predicted tidal strains from the solid Earth’s tide and oceanic tidal loading. Then we obtained a calibration matrix to transfer observed strain data to the regional strain field. We estimated the oceanic tidal loading accurately using a Green’s function, which takes the depth of deployment into consideration. We calculated four sets of calibration matrices using combinations of any three of a group of four gauges as well as a calibration matrix using all four gauges. The estimated calibration matrix was validated by comparing observed seismic strain waves after applying the calibration matrix with theoretical seismic strain waves excited by the 2010 Chile earthquake (Mw 8.8). The in-situ calibration was found to be appropriate for all eleven Ishii-type borehole strainmeters and for one of the four Gladwin Tensor Strainmeters (GTSMs). It was also effective with respect to two shear strains for two of the other three GTSMs.


2021 ◽  
Author(s):  
Cedric Twardzik ◽  
Mathilde Vergnolle ◽  
Anthony Sladen ◽  
Louisa L. H. Tsang

Abstract. It is well-established that the post-seismic slip results from the combined contribution of seismic slip and aseismic slip. However, the partitioning between these two modes of slip remains unclear due to the difficulty to infer detailed and robust descriptions of how both evolve in space and time. This is particularly true just after a mainshock when both processes are expected to be the strongest. Using state-of-the-art sub-daily processing of GNSS data, along with dense catalogs of aftershocks obtained from template-matching techniques, we unravel the spatiotemporal evolution of post-seismic slip and aftershocks over the first 12 hours following the 2015 Mw8.3 Illapel, Chile, earthquake. We show that the very early post-seismic activity occurs over two regions with distinct behaviors. To the north, post-seismic slip appears to be purely aseismic and precedes the occurrence of late aftershocks. To the south, aftershocks are the primary cause of the post-seismic slip. We suggest that this difference in behavior could be inferred only few hours after the mainshock, and thus could contribute to a more data-driven forecasts of long-term aftershocks.


Sign in / Sign up

Export Citation Format

Share Document