scholarly journals Antarctic Bottom Water production from the Vincennes Bay Polynya, East Antarctica

2014 ◽  
Vol 41 (10) ◽  
pp. 3528-3534 ◽  
Author(s):  
Yujiro Kitade ◽  
Keishi Shimada ◽  
Takeshi Tamura ◽  
Guy D. Williams ◽  
Shigeru Aoki ◽  
...  
2014 ◽  
Vol 44 (11) ◽  
pp. 2921-2937 ◽  
Author(s):  
Yoshihiro Nakayama ◽  
Kay I. Ohshima ◽  
Yoshimasa Matsumura ◽  
Yasushi Fukamachi ◽  
Hiroyasu Hasumi

Abstract At several locations around Antarctica, dense water is formed as a result of intense sea ice formation. When this dense water becomes sufficiently denser than the surrounding water, it descends the continental slope and forms Antarctic Bottom Water (AABW). This study presents the AABW formation off the coast of Cape Darnley [Cape Darnley Bottom Water (CDBW)] in East Antarctica, using a nonhydrostatic model. The model is forced for 8 months by a temporally uniform surface salt flux (because of sea ice formation) estimated from Advanced Microwave Scanning Radiometer for Earth Observing System (EOS; AMSR-E) data and a heat budget calculation. The authors reproduce AABW formation and associated periodic downslope flows of dense water. Descending pathways of dense water are largely determined by the topography; most dense water flows into depressions on the continental shelf, advects onto the continental slope, and is steered downslope to greater depths by the canyons. Intense sea ice formation is the most important factor in the formation of AABW off Cape Darnley, and the existence of depressions is of only minor importance for the flux of CDBW. The mechanism responsible for the periodic downslope flow of dense water is further analyzed using an idealized model setup. The period of dense water outflow is regulated primarily by the topographic beta effect.


2001 ◽  
Vol 179 (1-2) ◽  
pp. 1-8 ◽  
Author(s):  
Peter T. Harris ◽  
Giuliano Brancolini ◽  
Leanne Armand ◽  
Martina Busetti ◽  
Robin J. Beaman ◽  
...  

2016 ◽  
Vol 10 (6) ◽  
pp. 2603-2609 ◽  
Author(s):  
Christopher J. Fogwill ◽  
Erik van Sebille ◽  
Eva A. Cougnon ◽  
Chris S. M. Turney ◽  
Steve R. Rintoul ◽  
...  

Abstract. The dramatic calving of the Mertz Glacier tongue in 2010, precipitated by the movement of iceberg B09B, reshaped the oceanographic regime across the Mertz Polynya and Commonwealth Bay, regions where high-salinity shelf water (HSSW) – the precursor to Antarctic bottom water (AABW) – is formed. Here we present post-calving observations that suggest that this reconfiguration and subsequent grounding of B09B have driven the development of a new polynya and associated HSSW production off Commonwealth Bay. Supported by satellite observations and modelling, our findings demonstrate how local icescape changes may impact the formation of HSSW, with potential implications for large-scale ocean circulation.


2020 ◽  
Vol 125 (8) ◽  
Author(s):  
S. Aoki ◽  
K. Katsumata ◽  
M. Hamaguchi ◽  
A. Noda ◽  
Y. Kitade ◽  
...  

2013 ◽  
Vol 6 (3) ◽  
pp. 235-240 ◽  
Author(s):  
Kay I. Ohshima ◽  
Yasushi Fukamachi ◽  
Guy D. Williams ◽  
Sohey Nihashi ◽  
Fabien Roquet ◽  
...  

Author(s):  
G. D. Williams ◽  
S. Aoki ◽  
S. S. Jacobs ◽  
S. R. Rintoul ◽  
T. Tamura ◽  
...  

2004 ◽  
Vol 16 (4) ◽  
pp. 427-437 ◽  
Author(s):  
STANLEY S. JACOBS

For more than a century it has been known that the abyssal basins of the world ocean are primarily occupied by relatively cold and fresh waters that originate in the Southern Ocean. Their distinguishing characteristics are acquired by exposure of surface and shelf waters to ‘ventilation’ by the polar atmosphere and to the melting and freezing of ice over and near the Antarctic continental shelf. Subsequent mixing with deep water over the continental slope results in ‘Bottom Water’ that forms the southern sinking limb of the global ‘Thermohaline Circulation.’ Over recent decades, oceanographers have wrestled with a variety of bottom water and thermohaline circulation problems, ranging from basic definitions to forcing and formation sites, source components and properties, generation processes and rates, mixing and sinking, pathways and transports. A brief review of these efforts indicates both advances and anomalies in our understanding of Antarctic Bottom Water production and circulation. Examples from ongoing work illustrate increasing interest in the temporal variability of bottom water in relation to climate change.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Camille Hayatte Akhoudas ◽  
Jean-Baptiste Sallée ◽  
F. Alexander Haumann ◽  
Michael P. Meredith ◽  
Alberto Naveira Garabato ◽  
...  

AbstractThe Atlantic sector of the Southern Ocean is the world’s main production site of Antarctic Bottom Water, a water-mass that is ventilated at the ocean surface before sinking and entraining older water-masses—ultimately replenishing the abyssal global ocean. In recent decades, numerous attempts at estimating the rates of ventilation and overturning of Antarctic Bottom Water in this region have led to a strikingly broad range of results, with water transport-based calculations (8.4–9.7 Sv) yielding larger rates than tracer-based estimates (3.7–4.9 Sv). Here, we reconcile these conflicting views by integrating transport- and tracer-based estimates within a common analytical framework, in which bottom water formation processes are explicitly quantified. We show that the layer of Antarctic Bottom Water denser than 28.36 kg m$$^{-3}$$ - 3 $$\gamma _{n}$$ γ n is exported northward at a rate of 8.4 ± 0.7 Sv, composed of 4.5 ± 0.3 Sv of well-ventilated Dense Shelf Water, and 3.9 ± 0.5 Sv of old Circumpolar Deep Water entrained into cascading plumes. The majority, but not all, of the Dense Shelf Water (3.4 ± 0.6 Sv) is generated on the continental shelves of the Weddell Sea. Only 55% of AABW exported from the region is well ventilated and thus draws down heat and carbon into the deep ocean. Our findings unify traditionally contrasting views of Antarctic Bottom Water production in the Atlantic sector, and define a baseline, process-discerning target for its realistic representation in climate models.


2020 ◽  
Vol 13 (12) ◽  
pp. 780-786 ◽  
Author(s):  
Alessandro Silvano ◽  
Annie Foppert ◽  
Stephen R. Rintoul ◽  
Paul R. Holland ◽  
Takeshi Tamura ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document