scholarly journals Kinetic simulations of electric field structure within magnetic island during magnetic reconnection and their applications to the satellite observations

2014 ◽  
Vol 119 (9) ◽  
pp. 7402-7412 ◽  
Author(s):  
S. Y. Huang ◽  
M. Zhou ◽  
Z. G. Yuan ◽  
X. H. Deng ◽  
F. Sahraoui ◽  
...  
1981 ◽  
Vol 86 (C2) ◽  
pp. 1187 ◽  
Author(s):  
W. P. Winn ◽  
C. B. Moore ◽  
C. R. Holmes

1992 ◽  
Author(s):  
Nickolay B. Kuleshov ◽  
Victor A. Tarasov ◽  
Igor V. Tokarev ◽  
Sergey S. Sarkisov

2013 ◽  
Vol 20 (3) ◽  
pp. 365-377 ◽  
Author(s):  
W. Lyatsky ◽  
M. L. Goldstein

Abstract. We present here the results of a study of interacting magnetic fields that involves a force normal to the reconnection layer. In the presence of such force, the reconnection layer becomes unstable to interchange disturbances. The interchange instability results in formation of tongues of heated plasma that leaves the reconnection layer through its wide surface rather than through its narrow ends, as is the case in traditional magnetic reconnection models. This plasma flow out of the reconnection layer facilitates the removal of plasma from the layer and leads to fast reconnection. The proposed mechanism provides fast reconnection of interacting magnetic fields and does not depend on the thickness of the reconnection layer. This instability explains the strong turbulence and bidirectional streaming of plasma that is directed toward and away from the reconnection layer that is observed frequently above reconnection layers. The force normal to the reconnection layer also accelerates the removal of plasma islands appearing in the reconnection layer during turbulent reconnection. In the presence of this force normal to the reconnection layer, these islands are removed from the reconnection layer by the "buoyancy force", as happens in the case of interchange instability that arises due to the polarization electric field generated at the boundaries of the islands.


1999 ◽  
Vol 6 (4) ◽  
pp. 1253-1257 ◽  
Author(s):  
T.-H. Watanabe ◽  
T. Hayashi ◽  
T. Sato ◽  
M. Yamada ◽  
H. Ji

2017 ◽  
Vol 44 (8) ◽  
pp. 3447-3455 ◽  
Author(s):  
M. E. Innocenti ◽  
E. Cazzola ◽  
R. Mistry ◽  
J. P. Eastwood ◽  
M. V. Goldman ◽  
...  

2019 ◽  
Author(s):  
Ping Zhu ◽  
Zechen Wang ◽  
Jun Chen ◽  
Xingting Yan ◽  
Rui Liu

Abstract. Magnetic reconnection processes in the near-Earth magnetotail can be highly 3-dimensional (3D) in geometry and dynamics, even though the magnetotail configuration itself is nearly two dimensional due to the symmetry in the dusk-dawn direction. Such reconnection processes can be induced by the 3D dynamics of nonlinear ballooning instability. In this work, we explore the global 3D geometry of the reconnection process induced by ballooning instability in the near-Earth magnetotail by examining the distribution of quasi-separatrix layers associated with plasmoid formation in the entire 3D domain of magnetotail configuration, using an algorithm previously developed in context of solar physics. The 3D distribution of quasi-separatrix layers (QSLs) as well as their evolution directly follows the plasmoid formation during the nonlinear development of ballooning instability in both time and space. Such a close correlation demonstrates a strong coupling between the ballooning and the corresponding reconnection processes. It further confirms the intrinsic 3D nature of the ballooning-induced plasmoid formation and reconnection processes, in both geometry and dynamics. In addition, the reconstruction of the 3D QSL geometry may provide an alternative means for identifying the location and timing of 3D reconnection sites in magnetotail from both numerical simulations and satellite observations.


1994 ◽  
Vol 142 ◽  
pp. 719-728
Author(s):  
Bernhard Kliem

AbstractTest particle orbits in the two-dimensional Fadeev equilibrium with a perpendicular electric field added are analyzed to show that impulsive bursty reconnection, which has been proposed as a model for fragmentary energy release in solar flares, may account also for particle acceleration to (near) relativistic energies within a fraction of a second. The convective electric field connected with magnetic island dynamics can play an important role in the acceleration process.Subject headings: acceleration of particles — MHD — plasmas — Sun: corona — Sun: flares


Sign in / Sign up

Export Citation Format

Share Document