scholarly journals Shift of anammox bacterial community structure along the Pearl Estuary and the impact of environmental factors

2015 ◽  
Vol 120 (4) ◽  
pp. 2869-2883 ◽  
Author(s):  
Bingbing Fu ◽  
Jiwen Liu ◽  
Hongmei Yang ◽  
Ting Chang Hsu ◽  
Biyan He ◽  
...  
2013 ◽  
Vol 144 (5) ◽  
pp. S-829
Author(s):  
Nicholas A. Kennedy ◽  
Alan Walker ◽  
UK IBD Microbiota Consortia ◽  
UK IBD Genetics Consortia ◽  
Susan H. Berry ◽  
...  

2007 ◽  
Vol 36 (2) ◽  
pp. 93-104 ◽  
Author(s):  
Hazel Barton ◽  
Nicholas Taylor ◽  
Michael Kreate ◽  
Austin Springer ◽  
Stuart Oehrle ◽  
...  

Forests ◽  
2018 ◽  
Vol 9 (10) ◽  
pp. 657 ◽  
Author(s):  
Chuanbao Yang ◽  
Zheke Zhong ◽  
Xiaoping Zhang ◽  
Fangyuan Bian ◽  
Xuhua Du

Moso bamboo is one of the fastest-growing plants in the world. The objective of this study was to investigate the impact of converting secondary broadleaf evergreen forests (CK) to Moso bamboo plantations, and the impact of different management strategies, including no disturbance (M0), extensive management (M1), and intensive management (M2), on the soil organic carbon (SOC) sequestration potential, and relevant characteristics of the soil bacterial community. Our results showed that, in comparison with CK, M0 and M1 had significantly higher SOC and recalcitrant organic materials (aliphatic and aromatic compounds), and a lower C mineralization rate, whereas M2 had the opposite effects. The conversion from CK to Moso bamboo plantation significantly decreased the relative abundance of Acidobacteria in both the topsoil and subsoil soil layers. Compared with CK, M0 led to the enrichment of bacteria such as Alphaproteobacteria, Chloroflexi, and Bacteroidetes, which are involved in the decomposition of organic matter and the formation of humus and are, therefore, potentially beneficial for increasing the SOC. Furthermore, the ratio of the microbial biomass C (MBC) to total organic C (TOC), C mineralization rate, and bacterial diversity increased from M0 to M2, i.e., with an increase in the disturbance intensity. These findings indicate that the conversion of secondary broadleaf forest to bamboo forest alter the soil bacterial community structure. Reducing disturbance in bamboo forest management strategies should be actively taken up to improve the SOC, and maintain sustainable development in the forest industry.


2011 ◽  
Vol 56 (10) ◽  
pp. 1973-1991 ◽  
Author(s):  
M. ROMINA SCHIAFFINO ◽  
FERNANDO UNREIN ◽  
JOSEP M. GASOL ◽  
RAMON MASSANA ◽  
VANESSA BALAGUÉ ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document