mineralization rate
Recently Published Documents


TOTAL DOCUMENTS

114
(FIVE YEARS 29)

H-INDEX

22
(FIVE YEARS 1)

2021 ◽  
Vol 30 (4) ◽  
pp. 675-682
Author(s):  
Jale V. Jafarli

The article is dedicated to definition of the tendency to change and pattern of formation of the chemical regime of underground waters in the Turyanchay-Girdimanchay interfluve in the Shirvan steppe, Azerbaijan as a result of anthropogenic activity. The subsoil waters studied are spread in the zone between the Turyanchay and Girdimanchay rivers. From 1930 to 2019 based on analysis of the observation of the chemical regime of subsoil waters, the natural regime of the groundwaters in the studied area strongly changed as a result of irrigation and construction works. In 1930 the average mineralization degree of subsoil waters was 26.8 gram/liter in the zone. The level of subsoil waters approaches the surface and is exposed to strong evaporation as a result of irrigation and filtration of waters from irrigation channels. Consequently, the mineralization rate of subsoil waters increased and mass secondary salinization process occurred in the irrigated lands. The average mineralization degree of subsoil waters was 33.6–34.5 gram/liter in the research zone in the 1960s-1970s. Collector-drainage networks were built and basic washing of soils is carried out in order the prevent secondary salinization and regulate the level of subsoil waters. After the 1970s the mineralization rate of subsoil waters began to decrease due to basic washing, intensive irrigation and the activity of the collector-drainage network.The average mineralization degree decreased to 15.1 gram/liter. The mineralization degree of the water in the Main Shirvan Collector which takes subsoil waters formed in the zone with 253,000 hectares and which discaharges them into the Caspian Sea decreased more than 3 times in comparison with 1995. At present the mineralization degree of collector water is 1.8–2.5 gram/liter while its mineralization degree was 8.81 gram/liter in 1995. Formation of the process in a favourable direction enchances the potential of using collector water for irrigation, technical and other purposes and creates a basis for elimination of water deficiency in drought years. The research shows that anthropogenic activity mainly plays an important role in formation of the chemical regime of subsoil waters.


Nanomaterials ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 5
Author(s):  
Máté Náfrádi ◽  
Tünde Alapi ◽  
Gábor Bencsik ◽  
Csaba Janáky

In this work, the application of high-power LED365nm and commercial, low-price LED398nm for heterogeneous photocatalysis with TiO2 and ZnO photocatalysts are studied and compared, focusing on the effect of light intensity, photon energy, quantum yield, electrical energy consumption, and effect of matrices and inorganic components on radical formation. Coumarin (COU) and its hydroxylated product (7-HC) were used to investigate operating parameters on the •OH formation rate. In addition to COU, two neonicotinoids, imidacloprid and thiacloprid, were also used to study the effect of various LEDs, matrices, and inorganic ions. The transformation of COU was slower for LED398nm than for LED365nm, but r07-HC/r0COU ratio was significantly higher for LED398nm. The COU mineralization rate was the same for both photocatalysts using LED365nm, but a significant difference was observed using LED398nm. The impact of matrices and their main inorganic components Cl− and HCO3− were significantly different for ZnO and TiO2. The negative effect of HCO3− was evident, however, in the case of high-power LED365nm and TiO2, and the formation of CO3•− almost doubled the r07-HC and contributes to the conversion of neonicotinoids by altering the product distribution and mineralization rate.


Author(s):  
Junqiu Wu ◽  
Yue Zhao ◽  
Ran Zhao ◽  
Liming Jia ◽  
Zimin Wei

To explore the eutrophication degree in the typical lakes and reservoirs of the northeast region of China, the bioavailability of dissolved organic phosphorus (DOP) of the lakes has been examined in this study. The laboratory incubation was carried out at 20 °C for 55 days and the concentrations of total dissolved phosphorus (TDP), dissolved reactive phosphorus (DRP), DOP and the microbial biomass have been detected. Results showed that, during the process of incubation, the concentrations of TDP and DRP were increased, whereas the DOP was decreased, which leads to the decreased mineralization rate. In addition, the changes of microbial biomass were fluctuant, but they had significantly positive effects on the concentration changes and mineralization rate of DOP (p < 0.05). The correlation analysis among the phosphate fractions showed that the TDP significantly promoted the DRP concentration, mineralization rate of DOP and the cumulative mineralization of DOP. The kinetics model was conducted to predict the further mineralization of DOP and to analyze the pollution degree of the eight lakes and reservoirs. Accordingly, the lakes with high DRP and TDP had worse water quality and are prone to algae blooms.


Water ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 3194
Author(s):  
Yongmei Hou ◽  
Xiaolong Liu ◽  
Sainan Chen ◽  
Jie Ren ◽  
Li Bai ◽  
...  

Watershed-scale nitrogen pollution in aquatic systems has become a worldwide concern due to its continuous impact on water quality deterioration, while the knowledge of key influencing factors dominating nitrogen transportation and transformation at the sediment-water interface (SWI) remains limited, especially in impounded rivers with an artificial reservoir. Hence, for a better understanding of the effects of thermal stratification on nitrogen transformation, we investigated the nitrogen species and isotopes in the sediment of a deep reservoir in Southwest China. Our results confirmed a significant difference in nitrogen species and isotopic composition in sediment between those in the thermal stratification period and non-thermal stratification period and indicated that the sediment biogeochemical process and transportation were clearly linked to the variations in water temperature and dissolved oxygen dominated by the process of thermal stratification. Significant seasonal differences in NH4+-N and NO3−-N in pore water of the upper layer (0–19 cm) revealed that nitrification exhausted NH4+ in the non-stratified period (NSP), and a potential low mineralization rate appeared when compared with those in the stratified period (SP). Seasonal differences in nitrogen species and isotope fractionation of δ15N-PON (about 2.3‰ in SP) in the upper layer sediment indicated a higher anaerobic mineralization rate of organic matter in SP than that in NSP. The diffusion fluxes of NH4+-N at SWI were 9.48 and 15.66 mg·m−2·d−1 in NSP and SP, respectively, and annual NH4+-N diffusion accounted for 21.8% of total storage in the reservoir. This study demonstrated that the nitrogen cycling processes, especially nitrification, denitrification, and mineralization, have been largely altered along with the changes in dissolved oxygen and that the diffusion of nitrogen species varied with the presence of the oxygen. The results contribute to the future study of watershed nitrogen budget evaluation and suggest that the endogenous nitrogen released from the sediment-water interface should be emphasized when aiming to fulfil water management policies in deep reservoirs.


Agriculture ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 870
Author(s):  
Hongzhen Luo ◽  
Ana A. Robles-Aguilar ◽  
Ivona Sigurnjak ◽  
Evi Michels ◽  
Erik Meers

Biobased nitrogen (N) fertilizers derived from animal manure can substitute synthetic mineral N fertilizer and contribute to more sustainable agriculture. Practitioners need to obtain a reliable estimation of the biobased fertilizers’ N value. This study compared the estimates for pig slurry (PS) and liquid fraction of digestate (LFD) using laboratory incubation and plant-growing experiments. A no-N treatment was used as control and calcium ammonium nitrate (CAN) as synthetic mineral fertilizer. After 100 days of incubation, the addition of PS and LFD resulted in a net N mineralization rate of 10.6 ± 0.3% and 20.6 ± 0.4% of the total applied N, respectively. The addition of CAN showed no significant net mineralization or immobilization (net N release 96 ± 6%). In the pot experiment under vegetation, all fertilized treatments caused N immobilization with a negative net N mineralization rate of −51 ± 11%, −9 ± 4%, and −27 ± 10% of the total applied N in CAN, PS, and LFD treatments, respectively. Compared to the pot experiment, the laboratory incubation without vegetation may have overestimated the N value of biobased fertilizers. Vegetation resulted in a lower estimation of available N from fertilizers, probably due to intensified competition with soil microbes or increased N loss via denitrification.


Author(s):  
T. H. Ho ◽  
C. H. Wu ◽  
T. Y. Han ◽  
W. J. Syu

Abstract Ozone, UV/ozone, ozone/persulfate (PS) and UV/ozone/PS systems were used to mineralize sulfonamides. Sulfadiazine (SDZ), sulfamerazine (SMR) and sulfamethazine (SMZ) were the target compounds. The novel contribution of this study is its determination of the effects of PS addition, sulfonamide structure, pH and salinity on sulfonamide mineralization in ozone-based systems. The mineralization rate of sulfonamides satisfied pseudo-first-order kinetics. The SMZ mineralization rate constant in ozone, UV/ozone, ozone/PS and UV/ozone/PS systems at pH 5 were 0.0058; 0.0101; 0.0069 and 0.0802 min−1, respectively, and those at pH 7 were 0.0075; 0.0116; 0.0083 and 0.0873 min−1, respectively. The increase in the number of methyl-substituents in the heterocyclic group of SMZ and the corresponding increase in the steric hindrance of radical addition, reduced mineralization rates below those of SMR and SDZ. The addition of PS promoted sulfonamide mineralization in the ozone-based systems; conversely, salinity inhibited sulfonamide mineralization.


Author(s):  
Ana González-Pedraza ◽  
Juan Escalante

The main source of N in the soil is organic matter; therefore, its availability depends on its quantity and quality, microbial activity, soil characteristics and management. An efficient way to quantify available N is by mineralizing it as ammonium (N-NH ) and nitrate (N-NO ). Therefore, in this study, the total and available N was determined in soil samples 0-20 cm deep from two plots with plantain plants (Musa AAB plantain subgroup cv. Hartón) with high and low vigor (AV and BV, respectively), in the South of Lake Maracaibo. Total N was determined by the Kjeldalh method and the mineralization of available N by incubation under laboratory conditions for 10 weeks. The accumulated mineralized N (Nm), the constant mineralization rate of (k) and the potentially mineralizable N (N0) were calculated. A one-way analysis of variance was applied, when it was significant (p<0.05), a Tukey test was applied for multiple comparisons of means. Total N was low (<0.025 %) and did not present statistical differences (p<0.05) between AV and BV. The accumulated mineralized N-NO was statistically (p<0.05) higher (524.47 mg.kg-1) in BV, while the N-NH did not present differences between AV and BV. Only k was statistically higher (0.07 ± 0.03; p<0.05) in BV. Nitrification was the process that prevailed especially in BV where organic carbon was higher and presented a higher percentage of sand.


Author(s):  
P. I. Kovalchuk ◽  
V. V. Stetsenko ◽  
Н. A. Balykhina ◽  
V. P. Kovalchuk ◽  
O. S. Demchuk

The balance method of determining the share of Kryvyi Rig Basin enterprises by the accumulated volume of mine water in the storage pond was considered. The balance method of participation of mining enterprises by the shares of mineral substances was formalized. An integrated approach of the control of water removal into the storage pond when using linear convolution of two balance equations by both the share of water volumes and the mineralization rate in the water discharges of enterprises was developed. It takes into account the choice of equity participation in mine water removal by economic and environmental criteria. The algorithm of equity participation of mining enterprises of Kryvyi Rih Basin on the principles of equality of two criteria was substantiated. The calculations of the share of discharge water accumulation in the storage pond of the Svistunov gully were carried out. The estimated price for water removal of one cubic meter of water into the storage pond by two criteria was considered. The estimation criteria are the volumes of pumped water and mineralization rate. Graphical dependences of the estimated price on the ratio of discharges concentration of different enterprises to the mixture concentration were built. Different estimation coefficients were used: paid water removal by water volumes; assessment of water removal only by mineralization rate; equal approach by the volumes (50%) and mineralization rate (50%). The calculations showed the efficiency of the algorithm, the applicability of its use by enterprises for integrated control of mine water removal by the criteria of volume and mineralization rate. The proposed balance method can be easily generalized when using other indicators of water quality (chlorides, sulfates, etc.), which are considered to be the most relevant for determining the equity participation of enterprises. In the future it is necessary to develop a theory of paid water use and water removal in conditions of unsatisfactory water quality, taking into account the integrated approach by different indicators that means multi-criteria assessment of water removal and accumulation of mine water.


Author(s):  
Yozil Kasimovich Hayitov ◽  
◽  
Nurbek Ahmadovich Toshbekov ◽  

The article presents opinions and comments on the use of collector-drainage networks and water sources in Bukhara region. Their hydromorphological data on the main collectors located in the region are also given. The changes in the flow and mineralization rate of collector-drainage networks were studied. Suggestions and recommendations were also provided in order to increase the efficiency of secondary use of some types of agricultural crops as an additional source of water from the collector-drainage water in Bukhara region.


Catalysts ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 20
Author(s):  
Marta Bettoni ◽  
Stefano Falcinelli ◽  
Cesare Rol ◽  
Marzio Rosi ◽  
Giovanni Vittorio Sebastiani

A jointed experimental and theoretical investigation pointing out new insights about the microscopic mechanism of the volatile organic compounds (VOCs) photocatalytic elimination by TiO2 was done. Methane, hexane, isooctane, acetone and methanol were photomineralized in a batch reactor. Values of K (adsorption constant on TiO2) and k (mineralization rate constant) of the five VOCs (treating the kinetic data through a Langmuir–Hinshelwood approach) were determined. Recorded K (in the range of 0.74 × 10−2–1.11 × 10−2 ppm−1) and k (in the range of 1.9–9.9 ppm min−1) values and performed theoretical calculations allowed us to suggest the involvement of an electron transfer step between the VOC and the hole, TiO2(h+), as the rate-determining one.


Sign in / Sign up

Export Citation Format

Share Document