scholarly journals Large Saharan dust storms: Implications for chlorophyll dynamics in the Mediterranean Sea

2016 ◽  
Vol 30 (11) ◽  
pp. 1725-1737 ◽  
Author(s):  
Rachele Gallisai ◽  
Gianluca Volpe ◽  
Francesc Peters
2011 ◽  
Vol 8 (5) ◽  
pp. 1067-1080 ◽  
Author(s):  
E. Ternon ◽  
C. Guieu ◽  
C. Ridame ◽  
S. L'Helguen ◽  
P. Catala

Abstract. The Mediterranean Sea is a semi-enclosed basin characterized by a strong thermal stratification during summer during which the atmosphere is the main source of new nutrients to the nutrient-depleted surface layer. From aerosol sampling and microcosm experiments performed during the TransMed BOUM cruise (June–July 2008) we showed that: (i) the Mediterranean atmosphere composition (Al, Fe, P) was homogeneous over ~28° of longitude and was a mixture with a constant proportion of anthropogenic contribution and a variable but modest contribution of crustal aerosols. This quite stable composition over a one month period and a long transect (~2500 km) allowed to define the Mediterranean atmospheric "background" that characterizes the summer season in the absence of major Saharan event and forest fires, (ii) primary production significantly increased at all tested stations after aerosols addition collected on-board and after Saharan dust analog addition, indicating that both additions relieved on-going (co)-limitations. Although both additions significantly increased the N2 fixation rates at the western station, diazotrophic activity remained very low (~0.2 nmol N L−1 d−1), (iii) due to the presence of anthropogenic particles, the probable higher solubility of nutrients associated with mixed aerosols (crustal + anthropogenic contribution), conferred a higher fertilizing potential to on-board collected aerosol as compared to Saharan dust analog. Finally, those experiments showed that atmospheric inputs from a mixed atmospheric event ("summer rain" type) or from a high-intensity Saharan event would induce comparable response by the biota in the stratified Mediterranean SML, during summer.


2012 ◽  
Vol 117 (D2) ◽  
pp. n/a-n/a ◽  
Author(s):  
P. Israelevich ◽  
E. Ganor ◽  
P. Alpert ◽  
P. Kishcha ◽  
A. Stupp

PLoS ONE ◽  
2014 ◽  
Vol 9 (10) ◽  
pp. e110762 ◽  
Author(s):  
Rachele Gallisai ◽  
Francesc Peters ◽  
Gianluca Volpe ◽  
Sara Basart ◽  
José Maria Baldasano

2012 ◽  
Vol 9 (12) ◽  
pp. 19199-19243 ◽  
Author(s):  
V. Giovagnetti ◽  
C. Brunet ◽  
F. Conversano ◽  
F. Tramontano ◽  
I. Obernosterer ◽  
...  

Abstract. In this study, we investigate the phytoplankton community response, with emphasis on ecophysiology and succession, after two experimental additions of Saharan dust in the surface layer of a low-nutrient low-chlorophyll ecosystem in the Mediterranean Sea. Three mesocosms were amended with evapocondensed dust to simulate realistic Saharan dust events while three additional mesocosms were kept unamended and served as controls. Experiments consisted in two consecutive dust additions and samples were daily collected at different depths (−0.1, −5 and −10 m) during one week, starting before each addition occurred. Data concerning HPLC pigment analysis on two size classes (< 3 and > 3 µm), electron transport rate (ETR) versus irradiance curves, non-photochemical fluorescence quenching (NPQ) and phytoplankton cell abundance (measured by flow cytometry), are presented and discussed in this paper. Results show that picophytoplankton mainly respond to the first dust addition, while the second addition leads to an increase of both pico- and nano-/microphytoplankton. Ecophysiological changes in the phytoplankton community are revealed, and an increase in NPQ development, as well as in pigment concentration per cell, follows the dust additions. ETR does not show large variations between dust-amended and control conditions, while biomass increases in response to the dust additions. Furthermore, the biomass increase observed during this mesocosm experiment allows us to attempt a quantitative assessment and parameterization of the onset of a phytoplankton bloom in a nutrient-limited ecosystem. These results are discussed focusing on the adaptation of picophytoplankton to such a nutrient-limited mixed layer system, as well as on size-dependent competition ability in phytoplankton.


2012 ◽  
Vol 9 (7) ◽  
pp. 8611-8639 ◽  
Author(s):  
R. Gallisai ◽  
F. Peters ◽  
S. Basart ◽  
J. M. Baldasano

Abstract. The fertilizing potential of atmospheric deposition on ocean production in the Mediterranean is a matter of debate. In this study, eight years (from 2000 to 2007) of weekly chlorophyll concentration data derived from SeaWiFS satellite observations and dust deposition data provided by the BSC-DREAM8b model are investigated in a basin-wide scale in the Mediterranean Sea to describe the geographical distribution and dynamics of both variables and to find potential relationships between them. In all analyses the largest positive cross correlation values are found with a time lag of 0 8-d periods. The coupling between annual cycles of chlorophyll and dust deposition may on average explain an 11.5% in chlorophyll variation in a large part of the Mediterranean. The Eastern Mediterranean shows the largest annual correlations, while the responsiveness to large events is small. The contrary is true for the Western and Northwestern Mediterranean where, if anything, only large events may add to the chlorophyll variability. The Central Mediterranean shows the highest responsiveness of chlorophyll to mineral dust deposition with annual contributions from seasonal variability as well as stimulations owing to large events. These results highlight the importance of dust deposition from African and Middle East origin in the potential stimulation of phytoplankton production in the nutrient depleted surface layers of the Mediterranean Sea.


2020 ◽  
Vol 17 (21) ◽  
pp. 5417-5441 ◽  
Author(s):  
Guillermo Feliú ◽  
Marc Pagano ◽  
Pamela Hidalgo ◽  
François Carlotti

Abstract. The PEACETIME cruise (May–June 2017) was a basin-scale survey covering the Provencal, Algerian, Tyrrhenian, and Ionian basins during the post-spring bloom period and was dedicated to tracking the impact of Saharan dust deposition events on the Mediterranean Sea pelagic ecosystem. Two such events occurred during this period, and the cruise strategy allowed for the study of the initial phase of the ecosystem response to one dust event in the Algerian Basin (during 5 d at the so-called “FAST long-duration station”) as well as the study of a latter response to another dust event in the Tyrrhenian Basin (by sampling from 5 to 12 d after the deposition). This paper documents the structural and functional patterns of the zooplankton component during this survey, including their responses to these two dust events. The mesozooplankton were sampled at 12 stations using nets with two different mesh sizes (100 and 200 µm) that were mounted on a Bongo frame for vertical hauls within the depth layer from 0 to 300 m. The Algerian and Tyrrhenian basins were found to be quite similar in terms of hydrological and biological variables, which clearly differentiated them from the northern Provencal Basin and the eastern Ionian Basin. In general, total mesozooplankton showed reduced variations in abundance and biomass values over the whole area, with a noticeable contribution from the small size fraction (<500 µm) of up to 50 % with respect to abundance and 25 % with respect to biomass. This small size fraction makes a significant contribution (15 %–21 %) to the mesozooplankton fluxes (carbon demand, grazing pressure, respiration, and excretion), which is estimated using allometric relationships to the mesozooplankton size spectrum at all stations. The taxonomic structure was dominated by copepods, mainly cyclopoid and calanoid copepods, and was completed by appendicularians, ostracods, and chaetognaths. Zooplankton taxa assemblages, analyzed using multivariate analysis and rank frequency diagrams, slightly differed between basins, which is in agreement with recently proposed Mediterranean regional patterns. However, the strongest changes in the zooplankton community were linked to the abovementioned dust deposition events. A synoptic analysis of the two dust events observed in the Tyrrhenian and Algerian basins, based on the rank frequency diagrams and a derived index proposed by Mouillot and Lepretre (2000), delivered a conceptual model of a virtual time series of the zooplankton community responses after a dust deposition event. The initial phase before the deposition event (state 0) was dominated by small-sized cells consumed by their typical zooplankton filter feeders (small copepods and appendicularians). The disturbed phase during the first 5 d following the deposition event (state 1) then induced a strong increase in filter feeders and grazers of larger cells as well as the progressive attraction of carnivorous species, leading to a sharp increase in the zooplankton distribution index. Afterward, this index progressively decreased from day 5 to day 12 following the event, highlighting a diversification of the community (state 2). A 3-week delay was estimated for the index to return to its initial value, potentially indicating the recovery time of a Mediterranean zooplankton community after a dust event. To our knowledge, PEACETIME is the first in situ study that has allowed for the observation of mesozooplankton responses before and soon after natural Saharan dust depositions. The change in the rank frequency diagrams of the zooplankton taxonomic structure is an interesting tool to highlight short-term responses of zooplankton to episodic dust deposition events. Obviously dust-stimulated pelagic productivity impacts up to mesozooplankton in terms of strong but short changes in taxa assemblages and trophic structure, with potential implications for oligotrophic systems such as the Mediterranean Sea.


2021 ◽  
Author(s):  
Karine Desboeufs ◽  
Franck Fu ◽  
Matthieu Bressac ◽  
Antonio Tovar-Sánchez ◽  
Sylvain Triquet ◽  
...  

Abstract. This study reports the only recent characterisation of two contrasted wet deposition events collected during the PEACETIME cruise in the Mediterranean open seawater, and their impact on trace metals (TMS) marine stocks. Rain samples were analysed for Al, 12 trace metals (TMs hereafter, including Co, Cd, Cr, Cu, Fe, Mn, Mo, Ni, Pb, Ti, V and Zn) and nutrients (N, P, DOC) concentrations. The first rain sample collected in the Ionian Sea (rain ION) was a wet typical regional background deposition event whereas the second rain collected in the Algerian Basin (rain FAST) was a Saharan dust wet deposition. The concentrations of TMs in the two rain samples were significantly lower compared to concentrations in rains collected at coastal sites reported in the literature, suggesting either less anthropogenic influence in the remote Mediterranean environment, or decreased emissions during the last decades in the Mediterranean Sea. The TMs inventories in the surface microlayer and mixed layer (0–20 m) at ION and FAST stations before and after the events, compared to atmospheric fluxes, showed that the atmospheric inputs were a significant source of particulate TMs for both layers. At the scale of the western and central Mediterranean, the atmospheric inputs were of the same order of magnitude as marine stocks within the ML for dissolved Fe, Co and Zn, underlining the role of the atmosphere in their biogeochemical cycle in the stratified Mediterranean Sea. In case of intense wet dust deposition event, the contribution of atmospheric inputs could be critical for dissolved stocks of the majority of TMs.


Sign in / Sign up

Export Citation Format

Share Document