scholarly journals Recent increase of Saharan dust transport over the Mediterranean Sea, as revealed from ocean color satellite (SeaWiFS) observations

2006 ◽  
Vol 111 (D12) ◽  
Author(s):  
D. Antoine ◽  
D. Nobileau
2011 ◽  
Vol 11 (24) ◽  
pp. 12787-12798 ◽  
Author(s):  
A. Sabolis ◽  
N. Meskhidze ◽  
G. Curci ◽  
P. I. Palmer ◽  
B. Gantt

Abstract. Formaldehyde (HCHO) is an oxidation product of a wide range of volatile organic compounds (VOCs) and important atmospheric constituent found in both the polluted urban atmosphere and remote background sites. In this study, remotely sensed data of HCHO vertical column densities are analyzed over the Mediterranean Sea using the Ozone Monitoring Instrument (OMI). Data analysis indicates a marked seasonal cycle with a summer maximum and winter minimum confined to the marine environment during a three year period (2005–2007) examined. A possible retrieval artifact associated with Saharan dust transport over the region is explored by changing intensity of Saharan dust sources in GEOS-Chem following the recommendation of Generoso et al. (2008). Recalculated air mass factors (AMF), based on the new values of aerosol loadings, lead to a reduction of the summertime "hot spot" in OMI retrieval of HCHO vertical columns over the Mediterranean Sea; however, even after the correction, enhanced values are still present in this region. To explain these values, marine biogenic sources of VOCs are examined. Calculations indicate that emission of phytoplankton-produced isoprene is not likely to explain the enhanced HCHO vertical columns over the Mediterranean Sea. Model simulations in conjunction with measurements studies may be required to fully explore the complex mechanism of HCHO formation over the Mediterranean and its implications for the air quality in the region.


2011 ◽  
Vol 8 (5) ◽  
pp. 1067-1080 ◽  
Author(s):  
E. Ternon ◽  
C. Guieu ◽  
C. Ridame ◽  
S. L'Helguen ◽  
P. Catala

Abstract. The Mediterranean Sea is a semi-enclosed basin characterized by a strong thermal stratification during summer during which the atmosphere is the main source of new nutrients to the nutrient-depleted surface layer. From aerosol sampling and microcosm experiments performed during the TransMed BOUM cruise (June–July 2008) we showed that: (i) the Mediterranean atmosphere composition (Al, Fe, P) was homogeneous over ~28° of longitude and was a mixture with a constant proportion of anthropogenic contribution and a variable but modest contribution of crustal aerosols. This quite stable composition over a one month period and a long transect (~2500 km) allowed to define the Mediterranean atmospheric "background" that characterizes the summer season in the absence of major Saharan event and forest fires, (ii) primary production significantly increased at all tested stations after aerosols addition collected on-board and after Saharan dust analog addition, indicating that both additions relieved on-going (co)-limitations. Although both additions significantly increased the N2 fixation rates at the western station, diazotrophic activity remained very low (~0.2 nmol N L−1 d−1), (iii) due to the presence of anthropogenic particles, the probable higher solubility of nutrients associated with mixed aerosols (crustal + anthropogenic contribution), conferred a higher fertilizing potential to on-board collected aerosol as compared to Saharan dust analog. Finally, those experiments showed that atmospheric inputs from a mixed atmospheric event ("summer rain" type) or from a high-intensity Saharan event would induce comparable response by the biota in the stratified Mediterranean SML, during summer.


2017 ◽  
Vol 17 (9) ◽  
pp. 5893-5919 ◽  
Author(s):  
Eleni Marinou ◽  
Vassilis Amiridis ◽  
Ioannis Binietoglou ◽  
Athanasios Tsikerdekis ◽  
Stavros Solomos ◽  
...  

Abstract. In this study we use a new dust product developed using CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation) observations and EARLINET (European Aerosol Research Lidar Network) measurements and methods to provide a 3-D multiyear analysis on the evolution of Saharan dust over North Africa and Europe. The product uses a CALIPSO L2 backscatter product corrected with a depolarization-based method to separate pure dust in external aerosol mixtures and a Saharan dust lidar ratio (LR) based on long-term EARLINET measurements to calculate the dust extinction profiles. The methodology is applied on a 9-year CALIPSO dataset (2007–2015) and the results are analyzed here to reveal for the first time the 3-D dust evolution and the seasonal patterns of dust over its transportation paths from the Sahara towards the Mediterranean and Continental Europe. During spring, the spatial distribution of dust shows a uniform pattern over the Sahara desert. The dust transport over the Mediterranean Sea results in mean dust optical depth (DOD) values up to 0.1. During summer, the dust activity is mostly shifted to the western part of the desert where mean DOD near the source is up to 0.6. Elevated dust plumes with mean extinction values between 10 and 75 Mm−1 are observed throughout the year at various heights between 2 and 6 km, extending up to latitudes of 40° N. Dust advection is identified even at latitudes of about 60° N, but this is due to rare events of episodic nature. Dust plumes of high DOD are also observed above the Balkans during the winter period and above northwest Europe during autumn at heights between 2 and 4 km, reaching mean extinction values up to 50 Mm−1. The dataset is considered unique with respect to its potential applications, including the evaluation of dust transport models and the estimation of cloud condensation nuclei (CCN) and ice nuclei (IN) concentration profiles. Finally, the product can be used to study dust dynamics during transportation, since it is capable of revealing even fine dynamical features such as the particle uplifting and deposition on European mountainous ridges such as the Alps and Carpathian Mountains.


2012 ◽  
Vol 117 (D2) ◽  
pp. n/a-n/a ◽  
Author(s):  
P. Israelevich ◽  
E. Ganor ◽  
P. Alpert ◽  
P. Kishcha ◽  
A. Stupp

PLoS ONE ◽  
2014 ◽  
Vol 9 (10) ◽  
pp. e110762 ◽  
Author(s):  
Rachele Gallisai ◽  
Francesc Peters ◽  
Gianluca Volpe ◽  
Sara Basart ◽  
José Maria Baldasano

2016 ◽  
Vol 30 (11) ◽  
pp. 1725-1737 ◽  
Author(s):  
Rachele Gallisai ◽  
Gianluca Volpe ◽  
Francesc Peters

2015 ◽  
Vol 12 (17) ◽  
pp. 14941-14980 ◽  
Author(s):  
N. Mayot ◽  
F. D'Ortenzio ◽  
M. Ribera d'Alcalà ◽  
H. Lavigne ◽  
H. Claustre

Abstract. D'Ortenzio and Ribera d'Alcalà (2009, DR09 hereafter) divided the Mediterranean Sea into "bioregions" based on the climatological seasonality (phenology) of phytoplankton. Here we investigate the interannual variability of this bioregionalization. Using 16 years of available ocean color observations (i.e. SeaWiFS and MODIS), we analyzed the spatial distribution of the DR09 trophic regimes on an annual basis. Additionally, we identified new trophic regimes, with seasonal cycles of phytoplankton biomass different from the DR09 climatological description and named "Anomalous". Overall, the classification of the Mediterranean phytoplankton phenology proposed by DR09 (i.e. "No Bloom", "Intermittently", "Bloom" and "Coastal"), is confirmed to be representative of most of the Mediterranean phytoplankton phenologies. The mean spatial distribution of these trophic regimes (i.e. bioregions) over the 16 years studied is also similar to the one proposed by DR09. But at regional scale some annual differences, in their spatial distribution and in the emergence of "Anomalous" trophic regimes, were observed compared to the DR09 description. These dissimilarities with the DR09 study were related to interannual variability in the sub-basin forcing: winter deep convection events, frontal instabilities, inflow of Atlantic or Black Sea Waters and river run-off. The large assortment of phytoplankton phenologies identified in the Mediterranean Sea is thus verified at interannual level, confirming the "sentinel" role of this basin to detect the impact of climate changes on the pelagic environment.


2012 ◽  
Vol 9 (12) ◽  
pp. 19199-19243 ◽  
Author(s):  
V. Giovagnetti ◽  
C. Brunet ◽  
F. Conversano ◽  
F. Tramontano ◽  
I. Obernosterer ◽  
...  

Abstract. In this study, we investigate the phytoplankton community response, with emphasis on ecophysiology and succession, after two experimental additions of Saharan dust in the surface layer of a low-nutrient low-chlorophyll ecosystem in the Mediterranean Sea. Three mesocosms were amended with evapocondensed dust to simulate realistic Saharan dust events while three additional mesocosms were kept unamended and served as controls. Experiments consisted in two consecutive dust additions and samples were daily collected at different depths (−0.1, −5 and −10 m) during one week, starting before each addition occurred. Data concerning HPLC pigment analysis on two size classes (< 3 and > 3 µm), electron transport rate (ETR) versus irradiance curves, non-photochemical fluorescence quenching (NPQ) and phytoplankton cell abundance (measured by flow cytometry), are presented and discussed in this paper. Results show that picophytoplankton mainly respond to the first dust addition, while the second addition leads to an increase of both pico- and nano-/microphytoplankton. Ecophysiological changes in the phytoplankton community are revealed, and an increase in NPQ development, as well as in pigment concentration per cell, follows the dust additions. ETR does not show large variations between dust-amended and control conditions, while biomass increases in response to the dust additions. Furthermore, the biomass increase observed during this mesocosm experiment allows us to attempt a quantitative assessment and parameterization of the onset of a phytoplankton bloom in a nutrient-limited ecosystem. These results are discussed focusing on the adaptation of picophytoplankton to such a nutrient-limited mixed layer system, as well as on size-dependent competition ability in phytoplankton.


Sign in / Sign up

Export Citation Format

Share Document