Historical variations of mercury stable isotope ratios in Arctic glacier firn and ice cores

2016 ◽  
Vol 30 (9) ◽  
pp. 1324-1347 ◽  
Author(s):  
C. M. Zdanowicz ◽  
E. M. Krümmel ◽  
A. J. Poulain ◽  
E. Yumvihoze ◽  
J. Chen ◽  
...  
2015 ◽  
Vol 15 (21) ◽  
pp. 30473-30509
Author(s):  
E. Schlosser ◽  
B. Stenni ◽  
M. Valt ◽  
A. Cagnati ◽  
J. G. Powers ◽  
...  

Abstract. At the East Antarctic deep ice core drilling site Dome C, daily precipitation measurements have been initiated in 2006 and are being continued until today. The amounts and stable isotope ratios of the precipitation samples as well as crystal types are determined. Within the measuring period, the two years 2009 and 2010 showed striking contrasting temperature and precipitation anomalies, particularly in the winter seasons. The reasons for these anomalies and their relation to stable isotope ratios are analysed using data from the mesoscale atmospheric model WRF (Weather Research and Forecasting Model) run under the Antarctic Mesoscale Prediction System (AMPS). 2009 was relatively warm and moist due to frequent warm air intrusions connected to amplification of Rossby waves in the circumpolar westerlies, whereas the winter of 2010 was extremely dry and cold. It is shown that while in 2010 a strong zonal atmospheric flow was dominant, in 2009 an enhanced meridional flow prevailed, which increased the meridional transport of heat and moisture onto the East Antarctic plateau and led to a number of high-precipitation/warming events at Dome C. This was also evident in a positive (negative) SAM index and a negative (positive) ZW3 index during the winter months of 2010 (2009). Changes in the frequency or seasonality of such event-type precipitation can lead to a strong bias in the air temperature derived from stable water isotopes in ice cores.


1984 ◽  
Vol 30 (104) ◽  
pp. 112-115 ◽  
Author(s):  
William L. Stockton ◽  
Ted E. DeLaca ◽  
Michael J. Deniro

AbstractStable isotope ratios and salinities of ice samples obtained from a submarine ice cliff at Explorers Cove demonstrate that the upper parts of the ice cliff have frozen directly from sea-water and are an underwater expression of permafrost, whereas the lower parts appear to be partially glacial in origin. These results indicate that there may be ice cores in the moraines of Explorers Cove, in which case the coastline of McMurdo Sound is more extensively ice-cored than previously known.


1982 ◽  
Vol 3 ◽  
pp. 269-273 ◽  
Author(s):  
D. Raynaud ◽  
I. M. Whillans

Analyses of ice cores taken from the Antarctic ice sheet can provide information on the environmental conditions under which the ice was formed. New results from measurements of gas content and stable isotope ratios in the Byrd station ice core are discussed and interpreted in terms of past iceflow changes.165 selected ice samples from 32 different depth levels along the core were processed for total gas content V and stable isotope ratios. This large dataset is used to discuss the variability and significance of the values of V at different depths. The short term variations of V are mainly explained by heterogeneities of the pore volume when the firn pores close off.The general trends in the values of V with depth are then used to investigate the possibility of past changes in the ice sheet. They suggest near-steady flow during the past few tens of thousands of years and that a thickening of about 200 to 250 m occurred in this area of the ice sheet at the end of the last ice age. This thickening could be due to a change in the accumulation rate.


1982 ◽  
Vol 3 ◽  
pp. 269-273 ◽  
Author(s):  
D. Raynaud ◽  
I. M. Whillans

Analyses of ice cores taken from the Antarctic ice sheet can provide information on the environmental conditions under which the ice was formed. New results from measurements of gas content and stable isotope ratios in the Byrd station ice core are discussed and interpreted in terms of past iceflow changes.165 selected ice samples from 32 different depth levels along the core were processed for total gas content V and stable isotope ratios. This large dataset is used to discuss the variability and significance of the values of V at different depths. The short term variations of V are mainly explained by heterogeneities of the pore volume when the firn pores close off.The general trends in the values of V with depth are then used to investigate the possibility of past changes in the ice sheet. They suggest near-steady flow during the past few tens of thousands of years and that a thickening of about 200 to 250 m occurred in this area of the ice sheet at the end of the last ice age. This thickening could be due to a change in the accumulation rate.


2015 ◽  
Vol 15 (19) ◽  
pp. 11243-11256 ◽  
Author(s):  
T. A. Berhanu ◽  
J. Savarino ◽  
J. Erbland ◽  
W. C. Vicars ◽  
S. Preunkert ◽  
...  

Abstract. Stable isotope ratios of nitrate preserved in deep ice cores are expected to provide unique and valuable information regarding paleoatmospheric processes. However, due to the post-depositional loss of nitrate in snow, this information may be erased or significantly modified by physical or photochemical processes before preservation in ice. We investigated the role of solar UV photolysis in the post-depositional modification of nitrate mass and stable isotope ratios at Dome C, Antarctica, during the austral summer of 2011/2012. Two 30 cm snow pits were filled with homogenized drifted snow from the vicinity of the base. One of these pits was covered with a plexiglass plate that transmits solar UV radiation, while the other was covered with a different plexiglass plate having a low UV transmittance. Samples were then collected from each pit at a 2–5 cm depth resolution and a 10-day frequency. At the end of the season, a comparable nitrate mass loss was observed in both pits for the top-level samples (0–7 cm) attributed to mixing with the surrounding snow. After excluding samples impacted by the mixing process, we derived an average apparent nitrogen isotopic fractionation (15ϵapp) of −67.8 ± 12 ‰ for the snow nitrate exposed to solar UV using the nitrate stable isotope ratios and concentration measurements. For the control samples in which solar UV was blocked, an apparent average 15ϵapp value of −12.0 ± 1.7 ‰ was derived. This difference strongly suggests that solar UV photolysis plays a dominant role in driving the isotopic fractionation of nitrate in snow. We have estimated a purely photolytic nitrogen isotopic fractionation (15ϵphoto) of −55.8 ± 12.0 ‰ from the difference in the derived apparent isotopic fractionations of the two experimental fields, as both pits were exposed to similar physical processes except exposure to solar UV. This value is in close agreement with the 15ϵphoto value of −47.9 ± 6.8 ‰ derived in a laboratory experiment simulated for Dome C conditions (Berhanu et al., 2014). We have also observed an insensitivity of 15ϵ with depth in the snowpack under the given experimental setup. This is due to the uniform attenuation of incoming solar UV by snow, as 15ϵ is strongly dependent on the spectral distribution of the incoming light flux. Together with earlier work, the results presented here represent a strong body of evidence that solar UV photolysis is the most relevant post-depositional process modifying the stable isotope ratios of snow nitrate at low-accumulation sites, where many deep ice cores are drilled. Nevertheless, modeling the loss of nitrate in snow is still required before a robust interpretation of ice core records can be provided.


1984 ◽  
Vol 30 (104) ◽  
pp. 112-115
Author(s):  
William L. Stockton ◽  
Ted E. DeLaca ◽  
Michael J. Deniro

AbstractStable isotope ratios and salinities of ice samples obtained from a submarine ice cliff at Explorers Cove demonstrate that the upper parts of the ice cliff have frozen directly from sea-water and are an underwater expression of permafrost, whereas the lower parts appear to be partially glacial in origin. These results indicate that there may be ice cores in the moraines of Explorers Cove, in which case the coastline of McMurdo Sound is more extensively ice-cored than previously known.


2014 ◽  
Vol 14 (23) ◽  
pp. 33045-33088 ◽  
Author(s):  
T. A. Berhanu ◽  
J. Savarino ◽  
J. Erbland ◽  
W. C. Vicars ◽  
S. Preunkert ◽  
...  

Abstract. Stable isotope ratios of nitrate preserved in deep ice cores are expected to provide unique and valuable information regarding paleo-atmospheric processes. However, due to the post-depositional loss of nitrate in snow, this information may be erased or significantly modified by physical or photochemical processes before preservation in ice. We have investigated the role of solar UV photolysis in the post-depositional modification of nitrate mass and stable isotope ratios at Dome C, Antarctica during the austral summer of 2011/12. Two 30 cm snow pits were filled with homogenized drifted snow from the vicinity of the base. One of these pits was covered with a plexiglass plate that transmits solar UV radiation, while the other was covered with a different plexiglass plate having a low UV transmittance. Samples were then collected from each pit at a 2–5 cm depth resolution and a 10 day frequency. At the end of the season, a comparable nitrate mass loss was observed in both pits for the top-level samples (0–7 cm). At deeper levels (7–30 cm), a significant nitrate mass loss (ca. 30%) was observed in the UV-exposed pit relative to the control field. From the nitrate stable isotope ratios and concentration losses measured in the snow nitrate exposed to solar UV, we have derived average apparent isotopic fractionations (15ϵ,18ϵ and 17E) of −67.8 ± 12‰, 12.5 ± 6.7‰ and 2.2 ± 1.4‰ for δ15N, δ18O, and Δ17O, respectively. These values are fairly stable throughout the season and are in close agreement with the apparent fractionations measured in natural snow at Dome C. Meanwhile, for the control samples in which solar UV was blocked, an apparent average 15ϵ value of −12.0 ± 1.7‰ was derived. The difference in the apparent 15ϵ values obtained for the two experimental fields strongly suggests that solar UV photolysis plays a dominant role in driving observed nitrate mass loss and resulting isotopic fractionation. We have also observed an insensitivity of 15ϵ with depth in the snowpack under the given experimental setup. This is due to the uniform attenuation of incoming solar UV by snow, as 15ϵ is strongly dependent on the shape of the incoming light flux. Together with earlier work, the results presented here represent a strong body of evidence that solar UV photolysis is the most relevant post-depositional process modifying the mass and stable isotope ratios of snow nitrate at low accumulation sites where most deep ice cores are drilled. Nevertheless, modeling the loss of nitrate in snow is still required before a robust interpretation of ice core records can be provided.


2005 ◽  
Vol 41 ◽  
pp. 77-84 ◽  
Author(s):  
Eric J. Steig ◽  
Paul A. Mayewski ◽  
Daniel A. Dixon ◽  
Susan D. Kaspari ◽  
Markus M. Frey ◽  
...  

AbstractShallow ice cores were obtained from widely distributed sites across the West Antarctic ice sheet, as part of the United States portion of the International Trans-Antarctic Scientific Expedition (US ITASE) program. The US ITASE cores have been dated by annual-layer counting, primarily through the identification of summer peaks in non-sea-salt sulfate (nssSO42–) concentration. Absolute dating accuracy of better than 2 years and relative dating accuracy better than 1 year is demonstrated by the identification of multiple volcanic marker horizons in each of the cores, Tambora, Indonesia (1815), being the most prominent. Independent validation is provided by the tracing of isochronal layers from site to site using high-frequency ice-penetrating radar observations, and by the timing of mid-winter warming events in stable-isotope ratios, which demonstrate significantly better than 1 year accuracy in the last 20 years. Dating precision to ±1 month is demonstrated by the occurrence of summer nitrate peaks and stable-isotope ratios in phase with nssSO42–, and winter-time sea-salt peaks out of phase, with phase variation of <1 month. Dating precision and accuracy are uniform with depth, for at least the last 100 years.


Author(s):  
Sosuke Otani ◽  
Sosuke Otani ◽  
Akira Umehara ◽  
Akira Umehara ◽  
Haruka Miyagawa ◽  
...  

Fish yields of Ruditapes philippinarum have been decreased and the resources have not yet recovered. It needs to clarify food sources of R. philippinarum, and relationship between primary and secondary production of it. The purpose on this study is to reveal transfer efficiency from primary producers to R. philippinarum and food sources of R. philippinarum. The field investigation was carried out to quantify biomass of R. philippinarum and primary producers on intertidal sand flat at Zigozen beach in Hiroshima Bay, Japan. In particular, photosynthetic rates of primary producers such as Zostera marina, Ulva sp. and microphytobenthos were determined in laboratory experiments. The carbon and nitrogen stable isotope ratios for R. philippinarum and 8 potential food sources (microphytobenthos, MPOM etc) growing in the tidal flat were also measured. In summer 2015, the primary productions of Z. marina, Ulva sp. and microphytobenthos were estimated to be 70.4 kgC/day, 43.4 kgC/day and 2.2 kgC/day, respectively. Secondary production of R. philippinarum was 0.4 kgC/day. Contribution of microphytobenthos to R. philippinarum as food source was 56-76% on the basis of those carbon and nitrogen stable isotope ratios. Transfer efficiency from microphytobenthos to R. philippinarum was estimated to be 10-14%. It was suggested that microphytobenthos might sustain the high secondary production of R. philippinarum, though the primary production of microphytobenthos was about 1/10 compared to other algae.


ACS Omega ◽  
2021 ◽  
Author(s):  
Purna K. Khatri ◽  
Roberto Larcher ◽  
Federica Camin ◽  
Luca Ziller ◽  
Agostino Tonon ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document