scholarly journals Reverse Estuarine Circulation Due to Local and Remote Wind Forcing, Enhanced by the Presence of Along‐Coast Estuaries

2017 ◽  
Vol 122 (12) ◽  
pp. 10184-10205 ◽  
Author(s):  
S. N. Giddings ◽  
P. MacCready
2019 ◽  
Vol 49 (3) ◽  
pp. 723-736 ◽  
Author(s):  
Xaver Lange ◽  
Hans Burchard

AbstractIn straight tidal estuaries, residual overturning circulation results mainly from a competition between gravitational forcing, wind forcing, and friction. To systematically investigate this for tidally energetic estuaries, the dynamics of estuarine cross sections is analyzed in terms of the relation between gravitational forcing, wind stress, and the strength of estuarine circulation. A system-dependent basic Wedderburn number is defined as the ratio between wind forcing and opposing gravitational forcing at which the estuarine circulation changes sign. An analytical steady-state solution for gravitationally and wind-driven exchange flow is constructed, where tidal mixing is parameterized by parabolic eddy viscosity. For this simple but fundamental situation, is calculated, meaning that the up-estuary wind forcing needs to be 15% of the gravitational forcing to invert estuarine circulation. In three steps, relevant physical processes are added to this basic state: (i) tidal dynamics are resolved by a prescribed semidiurnal tide, leading to caused by tidal straining; (ii) lateral circulation is added by introducing cross-channel bathymetry, smoothly increasing from 0.47 (flat bed) to 1.3 (parabolic bed) due to an increasing effect of lateral circulation on estuarine circulation; and (iii) full dynamics of a real tidally energetic inlet with highly variable forcing, where results from a two-dimensional linear regression.


1996 ◽  
Vol 48 (4) ◽  
pp. 593-606 ◽  
Author(s):  
Anders Omstedt ◽  
Leif Nyberg ◽  
Matti Leppäranta
Keyword(s):  

2013 ◽  
Vol 30 (2) ◽  
pp. 353-360 ◽  
Author(s):  
Rick Lumpkin ◽  
Semyon A. Grodsky ◽  
Luca Centurioni ◽  
Marie-Helene Rio ◽  
James A. Carton ◽  
...  

Abstract Satellite-tracked drifting buoys of the Global Drifter Program have drogues, centered at 15-m depth, to minimize direct wind forcing and Stokes drift. Drogue presence has historically been determined from submergence or tether strain records. However, recent studies have revealed that a significant fraction of drifters believed to be drogued have actually lost their drogues, a problem that peaked in the mid-2000s before the majority of drifters in the global array switched from submergence to tether strain sensors. In this study, a methodology is applied to the data to automatically reanalyze drogue presence based on anomalous downwind ageostrophic motion. Results indicate that the downwind slip of undrogued drifters is approximately 50% higher than previously believed. The reanalyzed results no longer exhibit the dramatic and spurious interannual variations seen in the original data. These results, along with information from submergence/tether strain and transmission frequency variations, are now being used to conduct a systematic manual reevaluation of drogue presence for each drifter in the post-1992 dataset.


2011 ◽  
Vol 61 (11) ◽  
pp. 1823-1844 ◽  
Author(s):  
Amandine Schaeffer ◽  
Pierre Garreau ◽  
Anne Molcard ◽  
Philippe Fraunié ◽  
Yann Seity

Sign in / Sign up

Export Citation Format

Share Document