larval transport
Recently Published Documents


TOTAL DOCUMENTS

157
(FIVE YEARS 27)

H-INDEX

33
(FIVE YEARS 2)

2021 ◽  
Vol 8 ◽  
Author(s):  
Gabriela M. Yamhure ◽  
Nathalie Reyns ◽  
Jesús Pineda

To better understand the hydrodynamic and hydrographic conditions experienced by larvae in the nearshore (within 1 km of shore), and the role that larval behavior plays in mediating shoreward transport to adult benthic habitats, we examined the vertical distribution and concentration of barnacle cyprids in a shallow, nearshore region in southern California, United States. We collected high-resolution physical measurements of currents and temperature at 3 stations (8, 5, and 4 m depths), and high-frequency measurements of barnacle larvae at a 4 m deep station ∼300 m from shore. Larvae were sampled from distinct 1 m depth intervals between the surface and the bottom (0–1 m, 1–2 m, 2–3 m, 3 m-bottom), each hour for overnight periods that ranged between 13 to 24 h in five cruises during the summers of 2017 and 2018. Barnacle cyprids of Chthamalus fissus predominated in all samples. Thermal stratification decreased closer to shore, but when the nearshore-most station remained stratified (Δ°C m–1 ≥ 0.1), C. fissus cyprid concentrations were high to extremely abundant (exceeding 200 and 4,000 individuals m–3, respectively). There were significant positive correlations between thermal stratification and the log-transformed C. fissus concentration at cruise-to-cruise scales, and between stratification and vertical variability in the high-frequency cross-shore currents at 2-day scales. Additionally, estimated larval transport was relatively high and shoreward when nearshore thermal stratification was greatest. Significant, albeit small, diel differences in cyprid distributions were also observed, with the proportion of cyprids increasing near the surface at night, and concentrations greater during the day than at night. Collectively, these results suggest that thermal stratification increases larval supply to the nearshore, and may enhance onshore larval transport to augment chances of successful settlement and recruitment to the intertidal adult habitat.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Juan D. Carvajal-Castro ◽  
Fernando Vargas-Salinas ◽  
Santiago Casas-Cardona ◽  
Bibiana Rojas ◽  
Juan C. Santos

AbstractMany organisms have evolved adaptations to increase the odds of survival of their offspring. Parental care has evolved several times in animals including ectotherms. In amphibians, ~ 10% of species exhibit parental care. Among these, poison frogs (Dendrobatidae) are well-known for their extensive care, which includes egg guarding, larval transport, and specialized tadpole provisioning with trophic eggs. At least one third of dendrobatids displaying aposematism by exhibiting warning coloration that informs potential predators about the presence of defensive skin toxins. Aposematism has a central role in poison frog diversification, including diet specialization, and visual and acoustic communication; and it is thought to have impacted their reproductive biology as well. We tested the latter association using multivariate phylogenetic methods at the family level. Our results show complex relationships between aposematism and certain aspects of the reproductive biology in dendrobatids. In particular, aposematic species tend to use more specialized tadpole-deposition sites, such as phytotelmata, and ferry fewer tadpoles than non-aposematic species. We propose that aposematism may have facilitated the diversification of microhabitat use in dendrobatids in the context of reproduction. Furthermore, the use of resource-limited tadpole-deposition environments may have evolved in tandem with an optimal reproductive strategy characterized by few offspring, biparental care, and female provisioning of food in the form of unfertilized eggs. We also found that in phytotelm-breeders, the rate of transition from cryptic to aposematic phenotype is 17 to 19 times higher than vice versa. Therefore, we infer that the aposematism in dendrobatids might serve as an umbrella trait for the evolution and maintenance of their complex offspring-caring activities.


2021 ◽  
Vol 9 ◽  
Author(s):  
Laura E. Timm ◽  
Thomas L. Jackson ◽  
Joan A. Browder ◽  
Heather D. Bracken-Grissom

The Gulf of Mexico pink shrimp, Farfantepenaeus duorarum, supports large fisheries in the United States and Mexico, with nearly 7,000 tons harvested from the region in 2016. Given the commercial importance of this species, management is critical: in 1997, the southern Gulf of Mexico pink shrimp fishery was declared collapsed and mitigation strategies went into effect, with recovery efforts lasting over a decade. Fisheries management can be informed and improved through a better understanding of how factors associated with early life history impact genetic diversity and population structure in the recruited population. Farfantepenaeus duorarum are short-lived, but highly fecund, and display high variability in recruitment patterns. To date, modeling the impacts of ecological, physical, and behavioral factors on juvenile settlement has focused on recruitment of larval individuals of F. duorarum to nursery grounds in Florida Bay. Here, we articulate testable hypotheses stemming from a recent model of larval transport and evaluate support for each with a population genomics approach, generating reduced representation library sequencing data for F. duorarum collected from seven regions around the Florida Peninsula. Our research represents the first and most molecular data-rich study of population structure in F. duorarum in the Gulf and reveals evidence of a differentiated population in the Dry Tortugas. Our approach largely validates a model of larval transport, allowing us to make management-informative inferences about the impacts of spawning location and recruitment patterns on intraspecific genetic diversity. Such inferences improve our understanding of the roles of non-genetic factors in generating and maintaining genetic diversity in a commercially important penaeid shrimp species.


2021 ◽  
Vol 8 ◽  
Author(s):  
Nina Yasuda ◽  
Yuko F. Kitano ◽  
Hiroki Taninaka ◽  
Satoshi Nagai ◽  
Takuma Mezaki ◽  
...  

Species delimitation of closely related corals is often challenging due to high intraspecies morphological variation and phenotypic plasticity with a lack of characteristic features and scarcity of relevant molecular markers. Goniopora spp. are one such coralline group, and the species status of Goniopora lobata and Goniopora djiboutiensis, an Indian and Pacific Ocean hermatypic coral species complex, has been questioned on the basis of previous molecular and morphological analyses. To further examine the species boundaries between G. lobata and G. djiboutiensis in Japan, specimens collected from areas spanning from Ryukyu Island to temperate Japanese regions were morphologically identified based on traditional morphological descriptions. Then, the genetic structure of the G. lobata and G. djiboutiensis species complex was examined using six newly developed microsatellite markers. The majority of the collected specimens had intermediate morphologies, and a STRUCTURE analysis using the LOCPRIOR model based on typical G. lobata and G. djiboutiensis morphology indicated that there were no genetic differences between these morphologies. On the other hand, STRUCTURE analysis based on oceanographic regions revealed that there was a genetic break between the temperate and subtropical regions. This weak genetic break corresponded with the Kuroshio-associated barrier, which prevents larval transport between subtropical and temperate regions. This study confirms that the current morphological identification criteria for G. lobata and G. djiboutiensis do not match the existing genetic boundaries and thus the two should be regarded as a species complex. This study also highlighted the robustness of using a multi-locus population genetic approach, including a geographic context, to confirm the species boundaries of closely related species.


2021 ◽  
Vol 8 ◽  
Author(s):  
Maik Tiedemann ◽  
Aril Slotte ◽  
Richard D. M. Nash ◽  
Erling K. Stenevik ◽  
Olav S. Kjesbu

Larval drift is a key process for successful fish recruitment. We used Norwegian spring-spawning herring (Clupea harengus) as model species to investigate the relationship between larval drift and recruitment. Larval drift indices were derived from simulations based on survey observations between 1993 and 2016. We show that forward simulated larval drift indices have an important positive relation to recruitment success. The relationship demonstrates elevated recruitment when larvae relocate rapidly northwards toward the Barents Sea. Negative or low larval drift indices coincide with only weak recruitment emphasizing limited survival in years with enhanced larval retention. Hence, with this work we combine drift model outcomes refined with survey data indicating that more extensive larval drift is an important component in population dynamics for high-latitude small pelagic fishes. However, larval displacement alone represents only one among many controlling factors but may offer possible predictions of the probability of higher or lower recruitment in the short term. The applicability of the drift indices is adaptable in all world oceans and all marine organisms that occupy planktonic life stages exposed to dynamic ocean currents. The study demonstrates how larval drift indices help to identify larval transport or retention to be crucial for population replenishment.


2021 ◽  
Vol 217 ◽  
pp. 103515
Author(s):  
Shan Huang ◽  
Zengan Deng ◽  
Guoqin Tang ◽  
Haoqian Li ◽  
Ting Yu

2021 ◽  
Vol 9 ◽  
Author(s):  
Akihide Kasai ◽  
Aya Yamazaki ◽  
Hyojin Ahn ◽  
Hiroki Yamanaka ◽  
Satoshi Kameyama ◽  
...  

The abundance of Japanese eel Anguilla japonica has rapidly decreased in recent decades. Following a re-evaluation of the possibility of extinction, the Japanese Ministry of the Environment and the International Union for Conservation of Nature listed the Japanese eel as an endangered species in 2013 and 2014, respectively. However, their abundance and precise distribution have never been clarified owing to their nocturnality and difficulty in their capture. In this study, the distribution of Japanese eels was investigated by monitoring for environmental DNA (eDNA), a non-invasive and efficient detection method. A total of 365 water samples were collected from 265 rivers located throughout Japan. High concentrations of eDNA of Japanese eels were detected in rivers on the Pacific side, but were low in the Sea of Japan side. In particular, very little eDNA amplification was confirmed from Hokkaido and the north of the Sea of Japan. The eDNA distribution in Japanese rivers coincides with the transport of the larvae in the ocean, as estimated by numerical simulations. Generalized linear mixed models were developed to explain the distribution of eDNA concentrations. The total nitrogen concentration emerged as an important factor in the best model. These results indicate that the distribution of Japanese eel is mostly determined by the maritime larval transport, and their survival and growth depend on the abundance of food in the river. The findings of the present study are useful for the management of populations and in the conservation of Japanese eels.


Sign in / Sign up

Export Citation Format

Share Document