lateral circulation
Recently Published Documents


TOTAL DOCUMENTS

37
(FIVE YEARS 7)

H-INDEX

12
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Rui Zhang ◽  
Bo Hong ◽  
Lei Zhu ◽  
Wenping Gong ◽  
Heng Zhang

Abstract. The Huangmaohai Estuary (HE) is a funnel-shaped microtidal estuary in the west of the Pearl River Delta (PRD) in southern China. Since China's reform and opening up in 1978, extensive human activities have occurred and greatly changed the estuary's topography, and modified its hydrodynamics. In this study, we examined the morphological evolution by analyzing remote sensing data with ArcGIS tools and studied the responses of hydrodynamics to the changes in topography from 1977 to 2010 by using the Delft3d model. We took the changes in estuarine circulation during neap tides in dry seasons as an example. The results show that human reclamation caused a narrowing of the estuary, and channel dredging deepened the estuary. These human activities changed both the longitudinal and lateral estuarine circulations. The longitudinal circulation was observed to increase with the deepening and narrowing of the estuary. The lateral circulation experienced changes in both the magnitude and pattern. The momentum balance analysis shows that when the depth and width changed simultaneously, the longitudinal estuarine circulation was modulated by both the channel deepening and width reduction, in which the friction, pressure gradient force, and advection terms were altered. The analysis of the longitudinal vortex dynamics indicates that the changes in the vertical shear of the longitudinal flow, lateral salinity gradient, and vertical mixing were responsible for the change in the lateral circulation. The changes in water depth are the dominant factor affecting lateral circulation intensity. This study has implications for sediment transport and morphological evolution in estuaries heavily impacted by human interventions.


2020 ◽  
Vol 101 ◽  
pp. 102235
Author(s):  
Jingui Liu ◽  
Yichun Li ◽  
Qingqing Pan ◽  
Shasha Lu ◽  
Yun Li

2020 ◽  
Vol 125 (8) ◽  
Author(s):  
Lianghong Chen ◽  
Wenping Gong ◽  
Heng Zhang ◽  
Lei Zhu ◽  
Weicong Cheng

2019 ◽  
Vol 49 (7) ◽  
pp. 1687-1697
Author(s):  
Xiaohui Xie ◽  
Ming Li

AbstractRecent mooring observations at a cross-channel section in Chesapeake Bay showed that internal solitary waves regularly appeared during certain phases of a tidal cycle and propagated from the deep channel to the shallow shoal. It was hypothesized that these waves resulted from the nonlinear steepening of internal lee waves generated by lateral currents over channel-shoal topography. In this study numerical modeling is conducted to investigate the interaction between lateral circulation and cross-channel topography and discern the generation mechanism of the internal lee waves. During ebb tides, lateral bottom Ekman forcing drives a counterclockwise (looking into estuary) lateral circulation, with strong currents advecting stratified water over the western flank of the deep channel and producing large isopycnal displacements. When the lateral flow becomes supercritical with respect to mode-2 internal waves, a mode-2 internal lee wave is generated on the flank of the deep channel and subsequently propagates onto the western shoal. When the bottom lateral flow becomes near-critical or supercritical with respect to mode-1 internal waves, the lee wave evolves into an internal hydraulic jump. On the shallow shoal, the lee waves or jumps evolve into internal bores of elevation.


2019 ◽  
Vol 49 (3) ◽  
pp. 723-736 ◽  
Author(s):  
Xaver Lange ◽  
Hans Burchard

AbstractIn straight tidal estuaries, residual overturning circulation results mainly from a competition between gravitational forcing, wind forcing, and friction. To systematically investigate this for tidally energetic estuaries, the dynamics of estuarine cross sections is analyzed in terms of the relation between gravitational forcing, wind stress, and the strength of estuarine circulation. A system-dependent basic Wedderburn number is defined as the ratio between wind forcing and opposing gravitational forcing at which the estuarine circulation changes sign. An analytical steady-state solution for gravitationally and wind-driven exchange flow is constructed, where tidal mixing is parameterized by parabolic eddy viscosity. For this simple but fundamental situation, is calculated, meaning that the up-estuary wind forcing needs to be 15% of the gravitational forcing to invert estuarine circulation. In three steps, relevant physical processes are added to this basic state: (i) tidal dynamics are resolved by a prescribed semidiurnal tide, leading to caused by tidal straining; (ii) lateral circulation is added by introducing cross-channel bathymetry, smoothly increasing from 0.47 (flat bed) to 1.3 (parabolic bed) due to an increasing effect of lateral circulation on estuarine circulation; and (iii) full dynamics of a real tidally energetic inlet with highly variable forcing, where results from a two-dimensional linear regression.


2018 ◽  
Vol 6 (4) ◽  
pp. 159 ◽  
Author(s):  
Linlin Cui ◽  
Haosheng Huang ◽  
Chunyan Li ◽  
Dubravko Justic

Using a three-dimensional, hydrostatic, primitive-equation ocean model, this study investigates the dynamics of lateral circulation in a partially stratified tidal inlet, the Barataria Pass in the Gulf of Mexico, over a 25.6 h diurnal tidal cycle. Model performance is assessed against observational data. During flood tide, the lateral circulation exhibits the characteristics similar to those induced by differential advection, i.e., lateral flow consists of two counter-rotating cells and is convergent at the surface. The analysis of momentum balance indicates that, in addition to the pressure gradient and vertical stress divergence, nonlinear advection and horizontal stress divergence are also important contributors. During ebb phase, the lateral circulation is mostly toward the right shoal (when looking into the estuary) for the whole water column and persisting for almost the whole period. The surface divergence suggested by the differential advection mechanism lasts for a very short period, if it ever exists. The main momentum balance across most of the transect during ebb is between the along-channel advection of cross-channel momentum and pressure gradient. The sectional averaged lateral velocity magnitude during ebb is comparable to that during flood, which is different from the idealized numerical experiment result.


Author(s):  
Linlin Cui ◽  
Haosheng Huang ◽  
Chunyan Li ◽  
Dubravko Justic

Using a three-dimensional, hydrostatic, primitive-equation ocean model, this study investigates the dynamics of lateral circulation in a partially stratified tidal inlet, the Barataria Pass in the Gulf of Mexico, over a 25.6-hour diurnal tidal cycle. Model performance is assessed against observational data. During flood tide, the lateral circulation exhibits the characteristics similar to that induced by differential advection, i.e., lateral flow consists of two counter-rotating cells and is convergent at the surface. The analysis of momentum balance indicates that, in addition to the pressure gradient and vertical stress divergence, nonlinear advection and horizontal stress divergence are also important contributors. During ebb phase, the lateral circulation is mostly eastward for the whole water column and persisting for almost the whole period. The surface divergence suggested by the differential advection mechanism lasts for a very short period, if it ever exists. The main momentum balance across most of the transect during ebb is between the along-channel advection of cross-channel momentum and pressure gradient. The sectional averaged lateral velocity magnitude during ebb is comparable to that during flood, which is different from the idealized numerical experiment result.


Author(s):  
Linlin Cui ◽  
Haosheng Huang ◽  
Chunyan Li ◽  
Dubravko Justic

Using a three-dimensional, hydrostatic, primitive-equation ocean model, this study investigates the dynamics of lateral circulation in a partially stratified tidal inlet, the Barataria Pass in the Gulf of Mexico, over a 25.6-hour diurnal tidal cycle. Model performance is assessed against observational data. During flood tide, the lateral circulation exhibits the characteristics similar to that induced by differential advection, i.e., lateral flow consists of two counter-rotating cells and is convergent at the surface. The analysis of momentum balance indicates that, in addition to the pressure gradient and vertical stress divergence, nonlinear advection and horizontal stress divergence are also important contributors. During ebb phase, the lateral circulation is mostly eastward for the whole water column and persisting for almost the whole period. The surface divergence suggested by the differential advection mechanism lasts for a very short period, if it ever exists. The main momentum balance across most of the transect during ebb is between the along-channel advection of cross-channel momentum and pressure gradient. The sectional averaged lateral velocity magnitude during ebb is comparable to that during flood, which is different from the idealized numerical experiment result.


Sign in / Sign up

Export Citation Format

Share Document