scholarly journals Slotted ESIW Antenna With High Efficiency for a MIMO Radar Sensor

Radio Science ◽  
2018 ◽  
Vol 53 (5) ◽  
pp. 605-610 ◽  
Author(s):  
Enric Miralles ◽  
A. Belenguer ◽  
J. Mateo ◽  
A. Torres ◽  
H. Esteban ◽  
...  
2020 ◽  
Vol 68 (11) ◽  
pp. 4642-4651
Author(s):  
Yi Zhang ◽  
Chengkai Zhu ◽  
Shuqin Dong ◽  
Zhitao Gu ◽  
Marcel Balle ◽  
...  

2014 ◽  
Vol 926-930 ◽  
pp. 2871-2875
Author(s):  
Ying Li ◽  
Gong Zhang

This paper discussed the problem of two dimensional (2D) direction of arrival (DOA) estimation for multi-input multi-output (MIMO) radar. The minimum-redundancy linear array (MLRA) is introduced into the transmitting array and receiving array, which enables the high efficiency of the radar system. By utilizing the algorithm of multiple signal classification (MUSIC), we illustrate that the proposed scheme performs better than the uniform linear arrays (ULA) configuration under the same conditions. Simulation results verify the effectiveness of our scheme.


1988 ◽  
Vol 102 ◽  
pp. 41
Author(s):  
E. Silver ◽  
C. Hailey ◽  
S. Labov ◽  
N. Madden ◽  
D. Landis ◽  
...  

The merits of microcalorimetry below 1°K for high resolution spectroscopy has become widely recognized on theoretical grounds. By combining the high efficiency, broadband spectral sensitivity of traditional photoelectric detectors with the high resolution capabilities characteristic of dispersive spectrometers, the microcalorimeter could potentially revolutionize spectroscopic measurements of astrophysical and laboratory plasmas. In actuality, however, the performance of prototype instruments has fallen short of theoretical predictions and practical detectors are still unavailable for use as laboratory and space-based instruments. These issues are currently being addressed by the new collaborative initiative between LLNL, LBL, U.C.I., U.C.B., and U.C.D.. Microcalorimeters of various types are being developed and tested at temperatures of 1.4, 0.3, and 0.1°K. These include monolithic devices made from NTD Germanium and composite configurations using sapphire substrates with temperature sensors fabricated from NTD Germanium, evaporative films of Germanium-Gold alloy, or material with superconducting transition edges. A new approache to low noise pulse counting electronics has been developed that allows the ultimate speed of the device to be determined solely by the detector thermal response and geometry. Our laboratory studies of the thermal and resistive properties of these and other candidate materials should enable us to characterize the pulse shape and subsequently predict the ultimate performance. We are building a compact adiabatic demagnetization refrigerator for conveniently reaching 0.1°K in the laboratory and for use in future satellite-borne missions. A description of this instrument together with results from our most recent experiments will be presented.


Sign in / Sign up

Export Citation Format

Share Document