Microcalorimeters for X-Ray Spectroscopy

1988 ◽  
Vol 102 ◽  
pp. 41
Author(s):  
E. Silver ◽  
C. Hailey ◽  
S. Labov ◽  
N. Madden ◽  
D. Landis ◽  
...  

The merits of microcalorimetry below 1°K for high resolution spectroscopy has become widely recognized on theoretical grounds. By combining the high efficiency, broadband spectral sensitivity of traditional photoelectric detectors with the high resolution capabilities characteristic of dispersive spectrometers, the microcalorimeter could potentially revolutionize spectroscopic measurements of astrophysical and laboratory plasmas. In actuality, however, the performance of prototype instruments has fallen short of theoretical predictions and practical detectors are still unavailable for use as laboratory and space-based instruments. These issues are currently being addressed by the new collaborative initiative between LLNL, LBL, U.C.I., U.C.B., and U.C.D.. Microcalorimeters of various types are being developed and tested at temperatures of 1.4, 0.3, and 0.1°K. These include monolithic devices made from NTD Germanium and composite configurations using sapphire substrates with temperature sensors fabricated from NTD Germanium, evaporative films of Germanium-Gold alloy, or material with superconducting transition edges. A new approache to low noise pulse counting electronics has been developed that allows the ultimate speed of the device to be determined solely by the detector thermal response and geometry. Our laboratory studies of the thermal and resistive properties of these and other candidate materials should enable us to characterize the pulse shape and subsequently predict the ultimate performance. We are building a compact adiabatic demagnetization refrigerator for conveniently reaching 0.1°K in the laboratory and for use in future satellite-borne missions. A description of this instrument together with results from our most recent experiments will be presented.

2007 ◽  
Vol 32 (19) ◽  
pp. 2876 ◽  
Author(s):  
K. Döringshoff ◽  
I. Ernsting ◽  
R.-H. Rinkleff ◽  
S. Schiller ◽  
A. Wicht

Sensors ◽  
2021 ◽  
Vol 21 (17) ◽  
pp. 5706
Author(s):  
Tatsuo Dougakiuchi ◽  
Naota Akikusa

Broadband, high-resolution, heterodyne, mid-infrared absorption spectroscopy was performed with a high-speed quantum cascade (QC) detector. By strictly reducing the device capacitance and inductance via air-bridge wiring and a small mesa structure, a 3-dB frequency response over 20 GHz was obtained for the QC detector, which had a 4.6-μm peak wavelength response. In addition to the high-speed, it exhibited low noise characteristics limited only by Johnson–Nyquist noise, bias-free operation without cooling, and photoresponse linearity over a wide dynamic range. In the detector characterization, the noise-equivalent power was 7.7 × 10−11 W/Hz1/2 at 4.6 μm, and it had good photoresponse linearity up to 250 mW, with respect to the input light power. Broadband and high-accuracy molecular spectroscopy based on heterodyne detection was demonstrated by means of two distributed-feedback 4.5-μm QC lasers. Specifically, several nitrous oxide absorption lines were acquired over a wavelength range of 0.8 cm−1 with the wide-band QC detector.


2018 ◽  
Vol 618 ◽  
pp. A33 ◽  
Author(s):  
C. M. Persson ◽  
M. Fridlund ◽  
O. Barragán ◽  
F. Dai ◽  
D. Gandolfi ◽  
...  

Context. Although thousands of exoplanets have been discovered to date, far fewer have been fully characterised, in particular super-Earths. The KESPRINT consortium identified K2-216 as a planetary candidate host star in the K2 space mission Campaign 8 field with a transiting super-Earth. The planet has recently been validated as well. Aims. Our aim was to confirm the detection and derive the main physical characteristics of K2-216 b, including the mass. Methods. We performed a series of follow-up observations: high-resolution imaging with the FastCam camera at the TCS and the Infrared Camera and Spectrograph at Subaru, and high-resolution spectroscopy with HARPS (La Silla), HARPS-N (TNG), and FIES (NOT). The stellar spectra were analyzed with the SpecMatch-Emp and SME codes to derive the fundamental stellar properties. We analyzed the K2 light curve with the pyaneti software. The radial velocity measurements were modelled with both a Gaussian process (GP) regression and the so-called floating chunk offset (FCO) technique to simultaneously model the planetary signal and correlated noise associated with stellar activity. Results. Imaging confirms that K2-216 is a single star. Our analysis discloses that the star is a moderately active K5V star of mass 0.70 ± 0.03 M⊙ and radius 0.72 ± 0.03 R⊙. Planet b is found to have a radius of 1.75−0.10+0.17 R⊕ and a 2.17-day orbit in agreement with previous results. We find consistent results for the planet mass from both models: Mp ≈ 7.4 ± 2.2 M⊕ from the GP regression and Mp ≈ 8.0 ± 1.6 M⊕ from the FCO technique, which implies that this planet is a super-Earth. The incident stellar flux is 2.48−48+220 F⊕. Conclusions. The planet parameters put planet b in the middle of, or just below, the gap of the radius distribution of small planets. The density is consistent with a rocky composition of primarily iron and magnesium silicate. In agreement with theoretical predictions, we find that the planet is a remnant core, stripped of its atmosphere, and is one of the largest planets found that has lost its atmosphere.


Author(s):  
P. G. Kotula ◽  
D. D. Erickson ◽  
C. B. Carter

High-resolution field-emission-gun scanning electron microscopy (FESEM) has recently emerged as an extremely powerful method for characterizing the micro- or nanostructure of materials. The development of high efficiency backscattered-electron detectors has increased the resolution attainable with backscattered-electrons to almost that attainable with secondary-electrons. This increased resolution allows backscattered-electron imaging to be utilized to study materials once possible only by TEM. In addition to providing quantitative information, such as critical dimensions, SEM is more statistically representative. That is, the amount of material that can be sampled with SEM for a given measurement is many orders of magnitude greater than that with TEM.In the present work, a Hitachi S-900 FESEM (operating at 5kV) equipped with a high-resolution backscattered electron detector, has been used to study the α-Fe2O3 enhanced or seeded solid-state phase transformations of sol-gel alumina and solid-state reactions in the NiO/α-Al2O3 system. In both cases, a thin-film cross-section approach has been developed to facilitate the investigation. Specifically, the FESEM allows transformed- or reaction-layer thicknesses along interfaces that are millimeters in length to be measured with a resolution of better than 10nm.


1997 ◽  
Vol 503 ◽  
Author(s):  
Yongxia Zhang ◽  
Yanwei Zhang ◽  
Juliana Blaser ◽  
T. S. Sriiram ◽  
R. B. Marcus

ABSTRACTA thermal microprobe has been designed and built for high resolution temperature sensing. The thermal sensor is a thin-film thermocouple junction at the tip of an Atomic Force Microprobe (AFM) silicon probe needle. Only wafer-stage processing steps are used for the fabrication. The thermal response over the range 25–s 4.5–rovolts per degree C and is linear.


Sign in / Sign up

Export Citation Format

Share Document