Hierarchical damping controller design in large‐scale power systems including hybrid renewable energy sources for compensation of time delays

Author(s):  
Mohsen Darabian ◽  
Ahmad Ashouri ◽  
Amir Bagheri
Author(s):  
Jianqiang Luo ◽  
Yiqing Zou ◽  
Siqi Bu

Various renewable energy sources such as wind power and photovoltaic (PV) have been increasingly integrated into the power system through power electronic converters in recent years. However, power electronic converter-driven stability issues under specific circumstances, for instance, modal resonances might deteriorate the dynamic performance of the power systems or even threaten the overall stability. In this paper, the integration impact of a hybrid renewable energy source (HRES) system on modal interaction and converter-driven stability is investigated in an IEEE 16-machine 68-bus power system. Firstly, an HRES system is introduced, which consists of full converter-based wind power generation (FCWG) and full converter-based photovoltaic generation (FCPV). The equivalent dynamic models of FCWG and FCPV are then established, followed by the linearized state-space modeling. On this basis, converter-driven stability analyses are performed to reveal the modal resonance mechanisms of the interconnected power systems and the modal interaction phenomenon. Additionally, time-domain simulations are conducted to verify effectiveness of dynamic models and support the converter-driven stability analysis results. To avoid detrimental modal resonances, an optimization strategy is further proposed by retuning the controller parameters of the HRES system. The overall results demonstrate the modal interaction effect between external AC power system and the HRES system and its various impacts on converter-driven stability.


2019 ◽  
Vol 217 ◽  
pp. 01006
Author(s):  
Irina Kolosok ◽  
Elena Korkina ◽  
Victor Kurbatsky

When planning and managing the present-day and future transformed electric power systems (EPS), such comparatively new properties as flexibility and cyber resilience shall be taken into account along with EPS conventional properties, such as Reliability, Security, Survivability, and Vulnerability. Large-scale introduction of renewable energy sources notably lowers the EPS flexibility. Installation of Energy Storages allows compensation of power production imbalance occurred when using renewable energy sources, which makes the energy system more robust, but lowers its cyber security. The paper considers the main performances and models of Energy Storages, their impact on flexibility and cyber security of electric networks; it also presents the technique for quantifying the flexibility of a network with Energy Storages, and identifies most promising directions of studies in this area.


In India, Electrical Power System is adapted to handle both constant loads and variable loads, also power is generated in two types; one is due to fossil fuels, and another one is due to renewable energy sources. However, renewable energy sources are playing a vital role in the production of clean energy and also useful for the reduction in greenhouse emission. Nevertheless, when there is any additional change in the generation side concerning to input supply, which is due to the uncertainty of nature, can create new challenges for the system operators and utility centers. It is not an easy task for the utility centres and supply operators to integrate variable renewable energy sources with the utility grid. This paper explores an overview of some operational techniques and solutions, which are helpful for high penetration of renewable energy sources such as solar and wind energy. It also explores operation, control management and challenges due to renewable energy when they integrated with the utility grid. By interfacing of renewable energy sources with a utility grid with proper management and control can provide bi-directional communication between suppliers and consumers smartly. The aim of integrating large scale renewable sources from transmission and distribution network into an existing system is to reduce the power quality issues, demand response, forecasting, peak demand, and improve network security, fast scheduling and dispatch, aiming towards smart grid technology for electrical power systems.


2021 ◽  
Vol 15 (3) ◽  
pp. 504-520
Author(s):  
Yogendra Arya ◽  
Nishant Kumar ◽  
Pankaj Dahiya ◽  
Gulshan Sharma ◽  
Emre Çelik ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4290
Author(s):  
Jianqiang Luo ◽  
Yiqing Zou ◽  
Siqi Bu ◽  
Ulas Karaagac

Renewable energy sources such as wind power and photovoltaics (PVs) have been increasingly integrated into the power system through power electronic converters in recent years. However, power electronic converter-driven stability has issues under specific circumstances, for instance, modal resonances might deteriorate the dynamic performance of the power systems or even threaten the overall stability. In this work, the integration impact of a hybrid renewable energy source (HRES) system on modal interaction and converter-driven stability was investigated in an IEEE 16-machine 68-bus power system. In this paper, firstly, an HRES system is introduced, which consists of full converter-based wind power generation (FCWG) and full converter-based photovoltaic generation (FCPV). The equivalent dynamic models of FCWG and FCPV are then established, followed by linearized state-space modeling. On this basis, converter-driven stability analysis was performed to reveal the modal resonance mechanisms between different renewable energy sources (RESs) and weak grids in the interconnected power systems and the multi-modal interaction phenomenon. Additionally, time-domain simulations were conducted to verify the effectiveness of dynamic models and support the converter-driven stability analysis results. To avoid detrimental modal resonances, a multi-modal and multi-parametric optimization strategy is further proposed by retuning the controller parameters of the multi-RESs in the HRES system. The overall results demonstrate the modal interaction effect between the external AC power system and the HRES system and its various impacts on converter-driven stability.


Sign in / Sign up

Export Citation Format

Share Document