Problems Arising in Finite-Element Simulations of the Chip Formation Process Under High Speed Cutting Conditions

Author(s):  
A. Behrens ◽  
K. Kalisch ◽  
B. Westhoff ◽  
J. Wulfsberg
2011 ◽  
Vol 130-134 ◽  
pp. 2817-2821
Author(s):  
You Xi Lin ◽  
Cong Ming Yan

A 2D fully thermal mechanical coupled finite element model is applied to study the influence of material parameters on serrate chip formation during high speed cutting process. The serrated chip formation during high speed machining was predicted. Of interests are the effects of thermal conductivity, specific heat and density. Results showed significant influence of these thermophysical parameters on the serrated chip phenomena, especially in the case of the density. Increasing thermal conductivity specific heat and density lead to a decreasing degree of segmentation. The influence of the thermal conductivity on the cutting force and the specific heat on maximum temperatures in the shear band is also discussed.


2006 ◽  
Vol 532-533 ◽  
pp. 753-756 ◽  
Author(s):  
Jun Zhao ◽  
Xing Ai ◽  
Zuo Li Li

The Finite Element Method (FEM) has proven to be an effective technique to investigate cutting process so as to improve cutting tool design and select optimum cutting conditions. The present work focuses on the FEM simulation of cutting forces in high speed cutting by using an orthogonal cutting model with variant undeformed chip thickness under plane-strain condition to mimic intermittent cutting process such as milling. High speed cutting of 45%C steel using uncoated carbide tools are simulated as the application of the proposed model. The updated Lagrangian formulation is adopted in the dynamic FEM simulation in which the normalized Cockroft and Latham damage criterion is used as the ductile fracture criterion. The simulation results of cutting force components under different cutting conditions show that both the thrust cutting force and the tangential cutting force increase with the increase in undeformed chip thickness or feed rate, whereas decrease with the increase in cutting speed. Some important aspects of modeling the high speed cutting are discussed as well to expect the future work in FEM simulation.


Author(s):  
Arno Behrens ◽  
Karsten Kalisch ◽  
Jens P. Wulfsberg

High speed cutting (HSC) has received growing attention in recent years due to its widespread applications in modern manufacturing. However, the theoretical understanding of the HSC process is considerably underdeveloped in comparison to the rapid progress of its practical application. To improve the state of knowledge of this topic, the German Research Association (DFG) has funded some research projects. One of them is the improvement of finite element simulation techniques of the HSC process. It covers the chip formation description, development of material laws for the description of HSC-conditions, the prediction of lamellar chips, the calculation of residual stresses, resulting temperature fields in the cutting tool and first descriptions of spatial chip formation. The paper will give an overview of the current progress in this project.


Author(s):  
Adinel Gavrus ◽  
Pascal Caestecker ◽  
Eric Ragneau

During the last decades, the importance of machining in manufacturing industry has required rigorous scientific studies concerning the chip formation process in order to determine optimal speeds, feeds or other technological parameters. For all types of machining including turning, milling, grinding, honing or lapping, the phenomenon of chip formation is similar in terms of the local interaction between the tool and the work piece. Because of the intensive use of CNC machine tools producing parts at ever-faster rates, it has become important to provide analysis of high speed cutting where complex loading conditions occur during the fabrication process: high gradients of the thermo-mechanical variables, strong nonlinearities of the thermo-mechanical coupling, large plastic strains, extremely high strain rates compared to that of other forming processes, important influence of the contact friction and of the microstructure evolution. Today many scientific researches are focalized on finite element analyses of the chip formation and of its morphology evolution during a high speed metals cutting process. To improve the quality of the numerical predictions, a better description of the local shear band formation is needed, using adequate rheological models. On this point of view this paper deals with the influence of the rheological behavior formulation on the morphology and geometry of the chip formation during a finite element simulation of a high speed metal cutting process. Numerical simulations of a high speed orthogonal cutting of special steels are employed to analysis the sensitivity of the numerical results describing the local cutting area with respect to different rheological laws: Norton-Hoff or Cowper-Symonds model, Johnson-Cook one or Zerilli-Armstrong formulation. To obtain a better description of the local material loadings and to take into account the important gradient of the strain rate, plastic strain and temperature values, a more adequate constitutive model is proposed by the author.


2009 ◽  
Vol 407-408 ◽  
pp. 599-603
Author(s):  
Xiang Hua Zhang ◽  
Hong Bing Wu

To accurately simulate the segmented chip formation of titanium alloy Ti6Al4V in high speed cutting process, the key techniques of the finite element modeling were investigated detailed, which included establishing the finite element model, material constitutive relation, chip separation criteria, material failure criteria. A high speed cutting case of titanium alloy Ti6Al4V were simulated with thermal mechanical analysis and adiabatic analysis respectively. Through the comparison of the two simulated results, it proved the segmented chip is formed because of the adiabatic shear. The results prove the finite element model established is correct.


2009 ◽  
Vol 626-627 ◽  
pp. 177-182 ◽  
Author(s):  
Wei Zhao ◽  
Ning He ◽  
Liang Li

Titanium alloys are known for their strong chemical reactivity with surrounding gas due to their high chemical affinity, especially in dry machining. This paper describes a study of chip formation characteristics under nitrogen gas media when machining Ti6Al4V alloy with WC-Co cemented carbide cutting tools at high cutting speeds. Based on the experimental study, a finite element model of two-dimensional orthogonal cutting process for Ti6Al4V alloy at different cutting conditions was developed using a commercial finite element software Deform-2D. Saw-tooth chips with adiabatic shear bands were produced in both experiments and simulations. And the enhanced cooling and anti-frictional effects of nitrogen gas upon the high speed cutting process of Ti6Al4V alloy were analyzed. Results of this investigation indicate that the anti-frictional performance of nitrogen gas has a significant effect on chip formation when machining Ti6Al4V alloy at high cutting speeds. Compared to air, Nitrogen gas is more suitable in improving the contact conditions at chip-tool interfaces and in increasing the shear band frequency of chip formation during high speed cutting of Ti6Al4V alloy.


Sign in / Sign up

Export Citation Format

Share Document