Receptor Adaptation Mechanisms

Author(s):  
Bih‐Hwa Shieh ◽  
Eugenia V Gurevich ◽  
Vsevolod V Gurevich
2021 ◽  
Vol 383 (1) ◽  
pp. 143-148
Author(s):  
Shadi Jafari ◽  
Mattias Alenius

AbstractOlfactory perception is very individualized in humans and also in Drosophila. The process that individualize olfaction is adaptation that across multiple time scales and mechanisms shape perception and olfactory-guided behaviors. Olfactory adaptation occurs both in the central nervous system and in the periphery. Central adaptation occurs at the level of the circuits that process olfactory inputs from the periphery where it can integrate inputs from other senses, metabolic states, and stress. We will here focus on the periphery and how the fast, slow, and persistent (lifelong) adaptation mechanisms in the olfactory sensory neurons individualize the Drosophila olfactory system.


2012 ◽  
Vol 107 (11) ◽  
pp. 3062-3070 ◽  
Author(s):  
Fabian Schnier ◽  
Markus Lappe

Recent studies have shown that saccadic inward adaptation (i.e., the shortening of saccade amplitude) and saccadic outward adaptation (i.e., the lengthening of saccade amplitude) rely on partially different neuronal mechanisms. There is increasing evidence that these differences are based on differences at the target registration or planning stages since outward but not inward adaptation transfers to hand-pointing and perceptual localization of flashed targets. Furthermore, the transfer of reactive saccade adaptation to long-duration overlap and scanning saccades is stronger after saccadic outward adaptation than that after saccadic inward adaptation, suggesting that modulated target registration stages during outward adaptation are increasingly used in the execution of saccades when the saccade target is visually available for a longer time. The difference in target presentation duration between reactive and scanning saccades is also linked to a difference in perceptual localization of different targets. Flashed targets are mislocalized after inward adaptation of reactive and scanning saccades but targets that are presented for a longer time (stationary targets) are mislocalized stronger after scanning than after reactive saccades. This link between perceptual localization and adaptation specificity suggests that mislocalization of stationary bars should be higher after outward than that after inward adaptation of reactive saccades. In the present study we test this prediction. We show that the relative amount of mislocalization of stationary versus flashed bars is higher after outward than that after inward adaptation of reactive saccades. Furthermore, during fixation stationary and flashed bars were mislocalized after outward but not after inward adaptation. Thus, our results give further evidence for different adaptation mechanisms between inward and outward adaptation and harmonize some recent research.


Sign in / Sign up

Export Citation Format

Share Document