mRNA: Intranuclear Transport

Author(s):  
Joan C Ritland Politz ◽  
Thoru Pederson
Author(s):  
Thoru Pederson ◽  
Joan C Politz

2020 ◽  
Vol 295 (20) ◽  
pp. 6861-6875 ◽  
Author(s):  
Carlos Pilquil ◽  
Zahra Alvandi ◽  
Michal Opas

Calreticulin is a highly conserved, ubiquitous Ca2+-buffering protein in the endoplasmic reticulum that controls transcriptional activity of various developmental programs and also of embryonic stem cell (ESC) differentiation. Calreticulin activates calcineurin, which dephosphorylates and induces the nuclear import of the osteogenic transcription regulator nuclear factor of activated T cells 1 (NFATC1). We investigated whether calreticulin controls a switch between osteogenesis and chondrogenesis in mouse ESCs through NFATC1. We found that in the absence of calreticulin, intranuclear transport of NFATC1 is blocked and that differentiation switches from osteogenic to chondrogenic, a process that could be mimicked by chemical inhibition of NFAT translocation. Glycogen synthase kinase 3β (GSK3β) deactivation and nuclear localization of β-catenin critical to osteogenesis were abrogated by calreticulin deficiency or NFAT blockade. Chemically induced GSK3β inhibition bypassed the calreticulin/calcineurin axis and increased osteoblast output from both control and calreticulin-deficient ESCs, while suppressing chondrogenesis. Calreticulin-deficient ESCs or cells treated with an NFAT blocker had enhanced expression of dickkopf WNT-signaling pathway inhibitor 1 (Dkk1), a canonical Wnt pathway antagonist that blocks GSK3β deactivation. The addition of recombinant mDKK1 switched osteogenic ESC differentiation toward chondrogenic differentiation. The results of our study indicate a role for endoplasmic reticulum calcium signaling via calreticulin in the differentiation of ESCs to closely associated osteoblast or chondrocyte lineages.


1979 ◽  
Vol 119 (2) ◽  
pp. 326-350 ◽  
Author(s):  
E.A Remler

1993 ◽  
Vol 121 (4) ◽  
pp. 729-742 ◽  
Author(s):  
Z Zachar ◽  
J Kramer ◽  
I P Mims ◽  
P M Bingham

We report studies using an enhanced experimental system to investigate organization of nuclear pre-mRNA metabolism. It is based on the powerful genetic system and polytene nuclei of Drosophila. We observe (at steady state) movement of a specific pre-mRNA between its gene and the nuclear surface. This movement is isotropic, at rates consistent with diffusion and is restricted to a small nuclear subcompartment defined by exclusion from chromosome axes and the nucleolus. Bulk polyadenylated nuclear pre-mRNA precisely localizes in this same subcompartment indicating that most or all pre-mRNAs use the same route of intranuclear movement. In addition to association with nascent transcripts, snRNPs are coconcentrated with pre-mRNA in this subcompartment. In contrast to constitutive splices, at least one regulated splice occurs slowly and may undergo execution remotely from the site of pre-mRNA synthesis. Details of our results suggest that retention of incompletely spliced pre-mRNA is a function of the nuclear surface. We propose a simple model--based on channeled diffusion--for organization of intranuclear transport and metabolism of pre-mRNAs in polytene nuclei. We argue that this model can be generalized to all metazoan nuclei.


1999 ◽  
Vol 73 (10) ◽  
pp. 8559-8570 ◽  
Author(s):  
Sharon C. Braunagel ◽  
Jared K. Burks ◽  
German Rosas-Acosta ◽  
Robert L. Harrison ◽  
H. Ma ◽  
...  

ABSTRACT Previous reports indicate that mutations within theAutographa californica nucleopolyhedrosis virusFP25K gene (open reading frame 61) significantly reduce incorporation of enveloped nucleocapsids into viral occlusions. We report that FP25K is a nucleocapsid protein of both the budded virus (BV) and occluded virus (ODV), and we describe the effects of twoFP25K mutations (480-1 [N-terminal truncation] and FP-βgal [C-terminal fusion]) on the expression and cellular localization of ODV-E66 and ODV-E25. Significantly decreased amounts of ODV-E66 are detected in cells infected with 480-1 or FP-βgal viral mutants, even though during FP-βgal infection, steady-state levels of ODV-E66 transcripts remain unchanged. While ODV-E66 is normally detected in intranuclear microvesicles and ODV envelopes by 24 h postinfection (p.i.), ODV-E66 remains cytosolic throughout infection in cells infected with 480-1 virus (up to 96 h p.i.), and its intranuclear localization is not detected until 96 h p.i. in cells infected with the FP-βgal mutant virus. The nuclear localization of ODV-E25 is not affected during infection by the FP-βgal mutant; however, its trafficking is significantly delayed during infection by the 480-1 mutant. Temporal Western blot analyses of cell lysates show that both 480-1 and FP-βgal mutant virus infections result in altered accumulation patterns of several structural proteins, including gp67, BV/ODV-E26, and the major capsid protein p39. In addition to BV/ODV-E26, ODV-E66 and gp67 may interact with FP25K, and ODV-E25 and p39 may also be components of a protein complex containing ODV-E66 and FP25K. Together, these data suggest that FP25K and its associated protein complex(es) may play an important role in the targeting and intracellular transport of viral proteins during infection.


2009 ◽  
Vol 186 (2) ◽  
pp. 193-200 ◽  
Author(s):  
Wilma A. Hofmann ◽  
Alessandro Arduini ◽  
Samantha M. Nicol ◽  
Carlos J. Camacho ◽  
James L. Lessard ◽  
...  

Actin, a major component of the cytoplasm, is also abundant in the nucleus. Nuclear actin is involved in a variety of nuclear processes including transcription, chromatin remodeling, and intranuclear transport. Nevertheless, the regulation of nuclear actin by posttranslational modifications has not been investigated. We now show that nuclear actin is modified by SUMO2 and SUMO3 and that computational modeling and site-directed mutagenesis identified K68 and K284 as critical sites for SUMOylating actin. We also present a model for the actin–SUMO complex and show that SUMOylation is required for the nuclear localization of actin.


Cell ◽  
2001 ◽  
Vol 105 (4) ◽  
pp. 499-509 ◽  
Author(s):  
Philipp Milkereit ◽  
Olivier Gadal ◽  
Alexander Podtelejnikov ◽  
Stephanie Trumtel ◽  
Nicole Gas ◽  
...  

2009 ◽  
Vol 184 (1) ◽  
pp. 21-29 ◽  
Author(s):  
Robert J. Scott ◽  
Lucas V. Cairo ◽  
David W. Van de Vosse ◽  
Richard W. Wozniak

Nuclear pore complexes (NPCs) mediate all nucleocytoplasmic traffic and provide docking sites for the spindle assembly checkpoint (SAC) protein Mad1p. Upon SAC activation, Mad1p is recruited onto kinetochores and rapidly cycles between NPCs and kinetochores. We examined the mechanism of Mad1p movement onto kinetochores and show that it is controlled by two components of the nuclear transport machinery, the exportin Xpo1p and Ran–guanosine triphosphate (GTP). Mad1p contains a nuclear export signal (NES) that is recognized by Xpo1p. The NES, Xpo1p, and RanGTP are all required for Mad1p recruitment onto kinetochores in checkpoint-activated cells. Consistent with this function, Xpo1p also accumulates on kinetochores after SAC activation. We have also shown that Xpo1p and RanGTP are required for the dynamic cycling of Mad1p between NPCs and kinetochores in checkpoint-arrested cells. These results reveal an important function for Xpo1p in mediating intranuclear transport events and identify a signaling pathway between kinetochores and NPCs.


1999 ◽  
Vol 10 (7) ◽  
pp. 2131-2147 ◽  
Author(s):  
Aarthi Narayanan ◽  
Wayne Speckmann ◽  
Rebecca Terns ◽  
Michael P. Terns

Small nucleolar RNAs (snoRNAs) are a large family of eukaryotic RNAs that function within the nucleolus in the biogenesis of ribosomes. One major class of snoRNAs is the box C/D snoRNAs named for their conserved box C and box D sequence elements. We have investigated the involvement of cis-acting sequences and intranuclear structures in the localization of box C/D snoRNAs to the nucleolus by assaying the intranuclear distribution of fluorescently labeled U3, U8, and U14 snoRNAs injected into Xenopus oocyte nuclei. Analysis of an extensive panel of U3 RNA variants showed that the box C/D motif, comprised of box C′, box D, and the 3′ terminal stem of U3, is necessary and sufficient for the nucleolar localization of U3 snoRNA. Disruption of the elements of the box C/D motif of U8 and U14 snoRNAs also prevented nucleolar localization, indicating that all box C/D snoRNAs use a common nucleolar-targeting mechanism. Finally, we found that wild-type box C/D snoRNAs transiently associate with coiled bodies before they localize to nucleoli and that variant RNAs that lack an intact box C/D motif are detained within coiled bodies. These results suggest that coiled bodies play a role in the biogenesis and/or intranuclear transport of box C/D snoRNAs.


1977 ◽  
Vol 8 (8) ◽  
pp. 793-798 ◽  
Author(s):  
Jan-Åke Gustafsson ◽  
Åke Pousette ◽  
Åke Stenberg

Sign in / Sign up

Export Citation Format

Share Document