Fractional Crystallization: The Magnesium Rare Earth Nitrates

2007 ◽  
pp. 52-58 ◽  
Author(s):  
D. W. Pearce ◽  
Laurence L. Quill
Lithos ◽  
2021 ◽  
pp. 105968
Author(s):  
Xue Shuai ◽  
Shi-Min Li ◽  
Di-Cheng Zhu ◽  
Qing Wang ◽  
Liang-Liang Zhang ◽  
...  

2011 ◽  
Vol 322 ◽  
pp. 337-340
Author(s):  
Lian Cai Du

A tripodal ligand, 2-acetylpyridine-tris(2-aminoethyl)amine (L), pyridine-N-oxide and their ternary complexes with rare earth nitrates have been synthesized. These new complexes with the general formula of Ln·L·PyNO·(NO3)3·nH2O (where Ln = La, Nd, Tb, Pr, Eu, n = 1~3 ) were characterized by elemental analysis, IR spectra, thermal analysis and molar conductivity. All the complexes are stable in air. The results show that the lanthanide ions in each complex are coordinated by nitrogen atoms of the ligand, oxygen atoms of PyNO and the nitrates. The fluorescent properties of the Eu(III) and Tb(III) complexes in solid were investigated.


2020 ◽  
Vol 8 (1) ◽  
pp. 33
Author(s):  
Daama Isaac ◽  
Mbowou Gbambie Isaac Bertrand ◽  
Yamgouot Ngounouno Fadimatou ◽  
Ntoumbe Mama ◽  
Ngounouno Ismaïla

The Garga-Sarali granitoids outcrop in form of large slabs and undistorted large blocks, into a schisto-gneissic basement. These rocks contain mainly muscovite and microcline, followed by K-feldspar, quartz, biotite, pyroxene, zircon and oxides, with coarse-grained to fine-grained textures. Geochemical analysis show that it belongs to differentiated rocks group (granodiorite-granite) with high SiO2 (up to 72 wt%) contents. Their genesis was made from a process of partial melting and fractional crystallization. These rocks are classified as belonging to I- and S-Type, meta-peraluminous, shoshonitic granites; belonging to the domain of volcanic arcs. The rare earth elements patterns suggest a source enriched of incompatible elements. The Nb-Ta and Ti negative anomalies from the multi-element patterns are characteristics of the subduction domains.  


1998 ◽  
Vol 35 (8) ◽  
pp. 951-963 ◽  
Author(s):  
J Dostal ◽  
D A Robichaud ◽  
B N Church ◽  
P H Reynolds

Eocene volcanic rocks of the Buck Creek basin in central British Columbia are part of the Challis-Kamloops volcanic belt extending from the United States across British Columbia to central Yukon. The volcanic rocks include two units, the Buck Creek Formation, composed of high-K calc-alkaline rocks with predominant andesitic composition, and the overlying Swans Lake unit made up of intraplate tholeiitic basalts. Whole rock 40Ar/39Ar data for both units show that they were emplaced at 50 Ma. They have similar mantle-normalized trace element patterns characterized by a large-ion lithophile element enrichment and Nb-Ta depletion, similar chondrite-normalized rare earth element patterns with (La/Yb)n ~4-14 and heavy rare earth element fractionation, and overlapping epsilonNd values (2.4-3.1) and initial Sr-isotope ratios ( ~ 0.704). These features suggest derivation of these two units from a similar mantle source, probably garnet-bearing subcontinental lithosphere. The differences between tholeiitic and calc-alkaline suites can be due, in part, to differences in the depth of fractional crystallization and the crystallizing mineral assemblage. Fractional crystallization of the calc-alkaline magmas began at a greater (mid-crustal) depth and included fractionation of Fe-Ti oxides. The volcanic rocks are probably related to subduction of the Farallon plate under the North American continent in a regime characterized by transcurrent movements and strike-slip faulting.


Sign in / Sign up

Export Citation Format

Share Document