The Brain behind Nonliteral Language: Insights from Brain Imaging

Author(s):  
Alexander Michael Rapp
2015 ◽  
Vol 370 (1668) ◽  
pp. 20140170 ◽  
Author(s):  
Riitta Hari ◽  
Lauri Parkkonen

We discuss the importance of timing in brain function: how temporal dynamics of the world has left its traces in the brain during evolution and how we can monitor the dynamics of the human brain with non-invasive measurements. Accurate timing is important for the interplay of neurons, neuronal circuitries, brain areas and human individuals. In the human brain, multiple temporal integration windows are hierarchically organized, with temporal scales ranging from microseconds to tens and hundreds of milliseconds for perceptual, motor and cognitive functions, and up to minutes, hours and even months for hormonal and mood changes. Accurate timing is impaired in several brain diseases. From the current repertoire of non-invasive brain imaging methods, only magnetoencephalography (MEG) and scalp electroencephalography (EEG) provide millisecond time-resolution; our focus in this paper is on MEG. Since the introduction of high-density whole-scalp MEG/EEG coverage in the 1990s, the instrumentation has not changed drastically; yet, novel data analyses are advancing the field rapidly by shifting the focus from the mere pinpointing of activity hotspots to seeking stimulus- or task-specific information and to characterizing functional networks. During the next decades, we can expect increased spatial resolution and accuracy of the time-resolved brain imaging and better understanding of brain function, especially its temporal constraints, with the development of novel instrumentation and finer-grained, physiologically inspired generative models of local and network activity. Merging both spatial and temporal information with increasing accuracy and carrying out recordings in naturalistic conditions, including social interaction, will bring much new information about human brain function.


Stroke ◽  
2017 ◽  
Vol 48 (suppl_1) ◽  
Author(s):  
Jonathan Singer ◽  
Alyssa Conigliaro ◽  
Elizabeth Spina ◽  
Susan Law ◽  
Steven Levine

Background: Central Post Stroke Pain (CPSP) is reportedly due to strokes in the thalamic region (Dishinbition Theory); however, the Central Imbalance Theory states that CPSP is due to damage to the spinothalamic pathway (STP). Aims: 1) Clarify the role of thalamic strokes and STP damage in CPSP patients. 2) Gain a current understanding of anatomic substrates, brain imaging, and treatment of CPSP. Methods: Two independent reviewers systematically reviewed PUBMED, CINAHL and Web of Science for studies including original, clinical studies and randomized controlled trials (RCTs) using PRISMA guidelines. Studies had to assess CPSP, using a single question or pain scale. Results: Search from January – July 2016, identifying 731 publications. We extracted data from 23 studies and categorized the articles’ aims into 4 sections: somatosensory deficits (5 studies), STP (3 studies), brain imaging (7 studies), and RCTs (8 studies). Somatosensory studies showed high rates of CPSP; however, the underlying causes of these deficits were unclear. Most studies did not refer to stroke location as playing a role in CPSP, but that pathways may. STP studies displayed consistent evidence that the STP plays a major role in CPSP, delineating that CPSP can occur even when the stroke is not in the thalamic region but in other regions (e.g. cerebellum, basal ganglia, medulla). Four of the brain imaging studies found CPSP not related and 3 found it was related to thalamic strokes. All 7 studies had major limitations including sample size, no control groups, and selection bias. RCTs were mostly negative, but brain stem and motor cortex stimulation studies showed the most promise. Conclusions: While CPSP has been linked to the thalamic region since the early 1900’s, the peer-reviewed literature showed equivocal results when examining location of stroke. Our systematic review suggests damage to the STP is associated with CPSP and this could provide insights into mechanisms and treatment. Moreover, historical connection of strokes in the thalamic region and CPSP should be reevaluated as many studies noted that strokes in other regions of the brain also produce CPSP.


2017 ◽  
Vol 39 (2) ◽  
pp. 380-384 ◽  
Author(s):  
S.A. Manikkam ◽  
K. Chetcuti ◽  
K.B. Howell ◽  
R. Savarirayan ◽  
A.M. Fink ◽  
...  

2014 ◽  
Vol 97 (4) ◽  
pp. 233 ◽  
Author(s):  
F Gelal ◽  
L Karakas¸ ◽  
A Sarsılmaz ◽  
K Yücel ◽  
C Dündar ◽  
...  

Author(s):  
Saugat Bhattacharyya ◽  
Anwesha Khasnobish ◽  
Poulami Ghosh ◽  
Ankita Mazumder ◽  
D. N. Tibarewala

Evolution has endowed human race with the most adroit brain, and to harness its potential to the fullest the concept of brain computer interface (BCI) has emerged. One of the most crucial components of BCI is the technique of brain imaging. The first approach in the field of brain imaging was to measure the electrical and magnetic activity of the brain, the techniques being known as Electroencephalography and Magnetoencephalography. Striving for furtherance, researchers came up with another alternative known as Magnetic Resonance Imaging. But it being confined to only structural imaging, the functional aspects of brain were mapped using functional magnetic resonance imaging. A similar but comparatively newer neuroimaging modality is Functional Near Infrared Spectroscopy. Transcranial Magnetic Stimulation neuro-physiological technique is based on the principle of electromagnetic induction. Based on nuclear medicine the brain imaging technologies that are widely explored in the world of BCI are Positron Emission Tomography and Single Positron Emission Tomography.


Author(s):  
G.D. Perkin ◽  
M.R. Johnson

Case History—A 33 yr old woman, known to have epilepsy, now presenting with odd behaviour. An epileptic seizure is a transient occurrence of signs and/or symptoms due to abnormal excessive or synchronous neuronal activity in the brain. Epilepsy is defined as a disorder of the brain characterized by an enduring predisposition to generate epileptic seizures and by the neurobiological, cognitive, psychological, and social consequences of this condition. The definition of epilepsy requires the occurrence of at least one epileptic seizure and evidence for an enduring alteration in the brain that increases the likelihood of future seizures such as an ‘epileptiform’ EEG abnormality, an appropriate lesion on structural brain imaging (CT or MRI), or the presence of recurrent (two or more) seizures. Epilepsy is a common, serious neurological disease, with prevalence 1% and a cumulative lifetime risk of 5%....


Sign in / Sign up

Export Citation Format

Share Document