skeletal dysplasias
Recently Published Documents


TOTAL DOCUMENTS

474
(FIVE YEARS 70)

H-INDEX

32
(FIVE YEARS 3)

Genes ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 137
Author(s):  
Tatyana Markova ◽  
Vladimir Kenis ◽  
Evgeniy Melchenko ◽  
Darya Osipova ◽  
Tatyana Nagornova ◽  
...  

The significant variability in the clinical manifestations of COL2A1-associated skeletal dysplasias makes it necessary to conduct a clinical and genetic analysis of individual nosological variants, which will contribute to improving our understanding of the pathogenetic mechanisms and prognosis. We presented the clinical and genetic characteristics of 60 Russian pediatric patients with type II collagenopathies caused by previously described and newly identified variants in the COL2A1 gene. Diagnosis confirmation was carried out by new generation sequencing of the target panel with subsequent validation of the identified variants using automated Sanger sequencing. It has been shown that clinical forms of spondyloepiphyseal dysplasias predominate in childhood, both with more severe clinical manifestations (58%) and with unusual phenotypes of mild forms with normal growth (25%). However, Stickler syndrome, type I was less common (17%). In the COL2A1 gene, 28 novel variants were identified, and a total of 63% of the variants were found in the triple helix region resulted in glycine substitution in Gly-XY repeats, which were identified in patients with clinical manifestations of congenital spondyloepiphyseal dysplasia with varying severity, and were not found in Stickler syndrome, type I and Kniest dysplasia. In the C-propeptide region, five novel variants leading to the development of unusual phenotypes of spondyloepiphyseal dysplasia have been identified.


2021 ◽  
Vol 3 (1) ◽  
pp. 01-03
Author(s):  
Prabir Mandal ◽  
Noor Islam ◽  
Anita Mandal

The human skeleton is living tissue that is either growing or being renewed. Our understanding of the pathogenesis of bone disorders has progressed considerably over the past 37 years. A large number of genetic and developmental disorders affect the skeleton. Rare bone diseases account for 5% of all birth defects. The skeletal dysplasias are inherited in an autosomal recessive, autosomal dominant, X-linked recessive, and X-linked dominant, and Y-linked manner.


2021 ◽  
pp. 565-608
Author(s):  
Ken Ong ◽  
Emile Hendriks

This chapter covers paediatric endocrinology. It starts with normal growth, then goes on to short stature, and constitutional delay of growth and puberty. Primary and secondary growth hormone deficiency are then explained, and treatment is outlined alongside GH resistance. It goes on to hypothyroidism, coeliac disease, skeletal dysplasias, and Turner syndrome. Small gestational age, and tall stature and rapid growth are all covered, alongside normal puberty, precocious puberty, and delayed or absent puberty. Normal sexual differentiation and disorders of sexual development and the assessment of ambiguous genitalia are included.


Author(s):  
Atsuhiko Handa ◽  
Gen Nishimura ◽  
Malia Xin Zhan ◽  
D. Lee Bennett ◽  
Georges Y. El-Khoury

AbstractSkeletal dysplasia encompasses a heterogeneous group of over 400 genetic disorders. They are individually rare, but collectively rather common with an approximate incidence of 1/5000. Thus, radiologists occasionally encounter skeletal dysplasias in their daily practices, and the topic is commonly brought up in radiology board examinations across the world. However, many radiologists and trainees struggle with this issue because of the lack of proper resources. The radiological diagnosis of skeletal dysplasias primarily rests on pattern recognition—a method that is often called the “Aunt Minnie” approach. Most skeletal dysplasias have an identifiable pattern of skeletal changes composed of unique findings and even pathognomonic findings. Thus, skeletal dysplasias are the best example to which the Aunt Minnie approach is readily applicable.


Author(s):  
Karina C. Silveira ◽  
Thatiane Y. Kanazawa ◽  
Cynthia Silveira ◽  
Maria D. J. Lacarrubba‐Flores ◽  
Benilton S. Carvalho ◽  
...  

Author(s):  
Shanshan Lv ◽  
Jiao Zhao ◽  
Lei Xi ◽  
Xiaoyun Lin ◽  
Chun Wang ◽  
...  

Genetic skeletal dysplasias (GSDs) are a type of disease with complex phenotype and high heterogeneity, characterized by cartilage and bone growth abnormalities. The variable phenotypes of GSD make clinical diagnosis difficult. To explore the clinical utility of targeted exome sequencing (TES) in the diagnosis of GSD, 223 probands with suspected GSD were enrolled for TES with a panel of 322 known disease-causing genes. After bioinformatics analysis, all candidate variants were prioritized by pathogenicity. Sanger sequencing was used to verify candidate variants in the probands and parents and to trace the source of variants in family members. We identified the molecular diagnoses for 110/223 probands from 24 skeletal disorder groups and confirmed 129 pathogenic/likely pathogenic variants in 48 genes. The overall diagnostic rate was 49%. The molecular diagnostic results modified the diagnosis in 25% of the probands, among which mucopolysaccharidosis and spondylo-epi-metaphyseal dysplasias were more likely to be misdiagnosed. The clinical management of 33% of the probands also improved; 21 families received genetic counseling; 4 families accepted prenatal genetic diagnosis, 1 of which was detected to carry pathogenic variants. The results showed that TES achieved a high diagnostic rate for GSD, helping clinicians confirm patients’ molecular diagnoses, formulate treatment directions, and carry out genetic counseling. TES could be an economical diagnostic method for patients with GSD.


2021 ◽  
Author(s):  
Lucia Sentchordi-Montané ◽  
Sara Benito-Sanz ◽  
Miriam Aza-Carmona ◽  
Francisca Díaz-González ◽  
Silvia Modamio-Høybjør ◽  
...  

Objective: Next generation sequencing (NGS) has expanded the diagnostic paradigm turning the focus to the growth plate. The aim of the study was to determine the prevalence of variants in genes implicated in skeletal dysplasias in probands with short stature and mild skeletal anomalies. Design: Clinical and radiological data were collected from 108 probands with short stature and mild skeletal anomalies. Methods: A customized skeletal dysplasia NGS panel was performed. Variants were classified using ACMG recommendations and Sherloc. Anthropometric measurements and skeletal anomalies were subsequently compared in those with or without an identified genetic defect. Results: Heterozygous variants were identified in 21/108 probands (19.4%). Variants were most frequently identified in ACAN (n=10) and IHH (n=7) whilst one variant was detected in COL2A1, CREBBP, EXT1 and PTPN11. Statistically significant differences (p<0.05) were observed for sitting height/height (SH/H) ratio, SH/H ratio SDS and the SH/H ratio SDS >1 in those with an identified variant compared to those without. Conclusions: A molecular defect was elucidated in a fifth of patients. Thus, the prevalence of mild forms of skeletal dysplasias is relatively high in individuals with short stature and mild skeletal anomalies, with variants in ACAN and IHH accounting for 81% of the cases. An elevated SH/H ratio appears to be associated with a greater probability in detecting a variant, but no other clinical or radiological feature has been found determinant to finding a genetic cause. Currently, we cannot perform extensive molecular studies in all short stature individuals so detailed clinical and radiological phenotyping may orientate which are the candidate patients to obtain worthwhile results. In addition, detailed phenotyping of probands and family members will often aid variant classification.


Author(s):  
Kenta Sawamura ◽  
Kenichi Mishima ◽  
Masaki Matsushita ◽  
Yasunari Kamiya ◽  
Hiroshi Kitoh

Sign in / Sign up

Export Citation Format

Share Document