Mechanical Properties of Ti-12Cr Alloy with Self-Tunable Young's Modulus for Use in Spinal Fixation Devices

PRICM ◽  
2013 ◽  
pp. 1551-1556
Author(s):  
Masaaki Nakai ◽  
Mitsuo Niinomi ◽  
Junko Hieda ◽  
Ken Cho
2013 ◽  
Vol 575-576 ◽  
pp. 453-460
Author(s):  
Hui Hong Liu ◽  
Mitsuo Niinomi ◽  
Masaaki Nakai ◽  
Junko Hieda ◽  
Ken Cho

A novel β-type titanium alloy with a changeable Youngs modulus, that is, with a low Young's modulus to prevent the stress-shielding effect for patients and a high Young's modulus to suppress springback for surgeons, should be developed in order to satisfy the conflicting requirements of both the patients and surgeons in spinal fixation operations. In this study, the oxygen content in ternary Ti-11Cr-O alloys was optimized in order to achieve a large changeable Young's modulus with good mechanical properties for spinal fixation applications. The increase in Youngs moduli of all the examined alloys by cold rolling is attributed to the deformation-induced ω-phase transformation which is suppressed by oxygen. Among the examined alloys, the Ti-11Cr-0.2O alloy exhibits the largest changeable Youngs modulus and a high tensile strength with an acceptable plasticity under both solution-treated (ST) and cold-rolled (CR) conditions. Therefore, the Ti-11Cr-0.2O alloy, which shows a good balance among a changeable Youngs modulus, high tensile strength and good plasticity, is considered a potential candidate for spinal fixation applications.


2015 ◽  
Vol 12 ◽  
pp. 352-361 ◽  
Author(s):  
Huihong Liu ◽  
Mitsuo Niinomi ◽  
Masaaki Nakai ◽  
Ken Cho ◽  
Kengo Narita ◽  
...  

2012 ◽  
Vol 706-709 ◽  
pp. 557-560
Author(s):  
Masaaki Nakai ◽  
Mitsuo Niinomi ◽  
Xiao Li Zhao ◽  
Xing Feng Zhao

A novel biomedical titanium alloy with the ability to undergo self-adjustment in its Young’s modulus was developed. In spinal fixation devices, the Young’s modulus of the metallic implant rod should be sufficiently high to suppress springback for the surgeon, but should also be sufficiently low to prevent stress shielding for the patient. Therefore, deformation-induced ω phase transformation was introduced into β-type titanium alloys so that the Young’s modulus of only the deformed part would increase during operation, while that of the non-deformed part would remain low. The increase in the Young’s modulus due to cold rolling was investigated for a binary Ti-12Cr alloy (mass%). Microstructural observation and Young’s modulus measurement reveal that the Ti-12Cr alloy undergoes deformation-induced ω phase transformation and exhibits the increase in the Young’s modulus by deformation.


2019 ◽  
Vol 107 (2) ◽  
pp. 207 ◽  
Author(s):  
Jaroslav Čech ◽  
Petr Haušild ◽  
Miroslav Karlík ◽  
Veronika Kadlecová ◽  
Jiří Čapek ◽  
...  

FeAl20Si20 (wt.%) powders prepared by mechanical alloying from different initial feedstock materials (Fe, Al, Si, FeAl27) were investigated in this study. Scanning electron microscopy, X-ray diffraction and nanoindentation techniques were used to analyze microstructure, phase composition and mechanical properties (hardness and Young’s modulus). Finite element model was developed to account for the decrease in measured values of mechanical properties of powder particles with increasing penetration depth caused by surrounding soft resin used for embedding powder particles. Progressive homogenization of the powders’ microstructure and an increase of hardness and Young’s modulus with milling time were observed and the time for complete homogenization was estimated.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
R. Salloom ◽  
S. A. Mantri ◽  
R. Banerjee ◽  
S. G. Srinivasan

AbstractFor decades the poor mechanical properties of Ti alloys were attributed to the intrinsic brittleness of the hexagonal ω-phase that has fewer than 5-independent slip systems. We contradict this conventional wisdom by coupling first-principles and cluster expansion calculations with experiments. We show that the elastic properties of the ω-phase can be systematically varied as a function of its composition to enhance both the ductility and strength of the Ti-alloy. Studies with five prototypical β-stabilizer solutes (Nb, Ta, V, Mo, and W) show that increasing β-stabilizer concentration destabilizes the ω-phase, in agreement with experiments. The Young’s modulus of ω-phase also decreased at larger concentration of β-stabilizers. Within the region of ω-phase stability, addition of Nb, Ta, and V (Group-V elements) decreased Young’s modulus more steeply compared to Mo and W (Group-VI elements) additions. The higher values of Young’s modulus of Ti–W and Ti–Mo binaries is related to the stronger stabilization of ω-phase due to the higher number of valence electrons. Density of states (DOS) calculations also revealed a stronger covalent bonding in the ω-phase compared to a metallic bonding in β-phase, and indicate that alloying is a promising route to enhance the ω-phase’s ductility. Overall, the mechanical properties of ω-phase predicted by our calculations agree well with the available experiments. Importantly, our study reveals that ω precipitates are not intrinsically embrittling and detrimental, and that we can create Ti-alloys with both good ductility and strength by tailoring ω precipitates' composition instead of completely eliminating them.


Sign in / Sign up

Export Citation Format

Share Document