Assessment of Environmental Impact of Rare Earth Metals Recycling from Used Magnets

2014 ◽  
pp. 107-111 ◽  
Author(s):  
Tomohiko Akahori ◽  
Yuzo Hiroshige ◽  
Masaharu Motoshita ◽  
Hiroki Hatayama ◽  
Kiyotaka Tahara
2010 ◽  
Vol 654-656 ◽  
pp. 803-806 ◽  
Author(s):  
Paul Koltun ◽  
Ambalavanar Tharumarajah

High strength properties combined with low density has made magnesium alloys a highly attractive structural material, in particular where weight savings is of concern. In air and ground transport these alloys are used as alternative material in place of heavier ferrous or aluminium alloys. In this respect, much research has been directed at developing and deploying superior magnesium alloys using rare earth elements (REEs), an example the Mg-RE (Ce, Y, Nd) alloys for drive train components. With the overall aim of ascertaining the environmental impact of employing REEs as alloying agents in producing superior Mg-RE alloys, it is paramount that a fundamental understanding of the environmental burden imparted by the extraction and production of REEs be determined. This study reports on such an assessment of REEs by conducting a detailed life cycle assessment (LCA) study of the environmental impact from mining to production of REEs.


1979 ◽  
Vol 40 (C5) ◽  
pp. C5-260-C5-261 ◽  
Author(s):  
M. Müller ◽  
E. Huber ◽  
H.-J. Güntherodt

1980 ◽  
Vol 41 (C1) ◽  
pp. C1-25-C1-31 ◽  
Author(s):  
N. S. Dixon ◽  
L. S. Fritz ◽  
Y. Mahmud ◽  
B. B. Triplett ◽  
S. S. Hanna ◽  
...  

2015 ◽  
Vol 53 (9) ◽  
pp. 637-641
Author(s):  
Chul-Woo Nam ◽  
Kyung-Ho Park ◽  
Hyun-Ho Kim ◽  
Jin-Tae Park

1963 ◽  
Vol 79 (2) ◽  
pp. 263-293 ◽  
Author(s):  
E.M. Savitskii ◽  
V.F. Terekhova ◽  
O.P. Naumkin

1964 ◽  
Vol 82 (3) ◽  
pp. 449-498 ◽  
Author(s):  
Konstantin P. Belov ◽  
R.Z. Levitin ◽  
S.A. Nikitin
Keyword(s):  

2018 ◽  
Vol 84 (11) ◽  
pp. 9-14
Author(s):  
E. S. Koshel ◽  
V. B. Baranovskaya ◽  
M. S. Doronina

The analytical capabilities of arc atomic emission determination of As, Bi, Sb, Cu, Te in rare earth metals (REM) and their oxides after preparatory group concentration using S,N-containing heterochain polymer sorbent are studied on a high-resolution spectrometer “Grand- Extra” (“WMC-Optoelectron-ics” company, Russia). Sorption kinetics and dependence of the degree of the impurity extraction on the solution acidity are analyzed to specify conditions of sorption concentration. To optimize the procedure of arc atomic emission determination of As, Bi, Sb, Cu, and Te various schemes of their sorption preconcentration and subsequent processing of the resulted concentrate with the addition of a collector at different stages of the sorption process have been considered. Graphite powder is used as a collector in analysis of rare earth oxides due to universality and relative simplicity of the emission spectrum. Conditions of analysis and parameters of the spectrometer that affect the analytical signal (mass and composition of the sample, shape and size of the electrodes, current intensity and generator operation mode, interelectrode spacing, wavelengths of the analytical lines) are chosen. The evaporation curves of the determinable impurities were studied and the exposure time of As, Bi, Sb, Cu, and Te in the resulted sorption concentrate was determined. Correctness of the obtained results was evaluated using standard samples of the composition and in comparisons between methods. The results of the study are used to develop a method of arc chemical-atomic emission analysis of yttrium, gadolinium, neodymium, europium, scandium and their oxides in a concentration range of n x (10-2 - 10-5) wt.%.


2018 ◽  
Vol 17 (8) ◽  
pp. 2001-2009
Author(s):  
Tatjana Juzsakova ◽  
Akos Redey ◽  
Le Phuoc Cuong ◽  
Zsofia Kovacs ◽  
Tamas Frater ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document