Laser Based Adhesion Testing Technique to Measure Thin Film-Substrate Interface Toughness

2018 ◽  
pp. 269-298
Author(s):  
Soma Sekhar V. Kandula
2018 ◽  
Vol 6 (26) ◽  
pp. 12708-12717 ◽  
Author(s):  
Maxwell C. Schulze ◽  
Roland K. Schulze ◽  
Amy L. Prieto

Choice of substrate material for electrodeposited Sb alloy-anodes influences the cycling stability and lifetime of Li-ion batteries.


1994 ◽  
Vol 356 ◽  
Author(s):  
Jong K. Lee

AbstractThe morphological instability of an epitaxially-strained, thin film is studied by means of a discrete atom method in a dislocation-free, two-dimensional crystal. The instability of the film-substrate interface is also examined in conjunction with the migration of the free surface. The results show that a mobile film-substrate interface can accelerate merger between the two surfaces, and anisotropic effects facilitate island formation. In addition, the instability of a curved interface is discussed with the results on the morphological evolution of coherent precipitates. A circular, soft precipitate in an isotropic matrix undergoes a series of shape transitions before reaching its equilibrium shape. As in the strained thin film case, transition begins with interfacial waves induced by the coherency strain. The waves then develop small lobes, which coarsen into a lower density of larger lobes. The larger lobes eventually coarsen as the equilibrium shape is approached. Anisotropic effects suppress some of the interfacial waves.


2007 ◽  
Vol 10 (3-4) ◽  
pp. 117-128 ◽  
Author(s):  
V.E. Panin ◽  
A.V. Panin ◽  
V.P. Sergeev ◽  
A.R. Shugurov

2004 ◽  
Vol 471-472 ◽  
pp. 746-749
Author(s):  
Ai Xin Feng ◽  
Yong Kang Zhang ◽  
H.K. Xie ◽  
Lan Cai

The interfacial adhesion between thin film and substrate is often the predominant factor and chief target in determining the performance and reliability of thin film/substrate system. A new technique of laser scratch testing technique has been presented by the authors of the article to characterize the interfacial adhesion between film and substrate, which synthesizes the advantages of traditional scratching technique and laser measure technique. The failure procedure is studied detailedly in the article. On different failure step of the film/substrate system, there are different characteristic s of stress and strain, as well as the characteristic of thermal lensing effect, which can be used as the distinguishing rule of the bonding state of the film/substrate system.


Author(s):  
E.J. Jenkins ◽  
D.S. Tucker ◽  
J.J. Hren

The size range of mineral and ceramic particles of one to a few microns is awkward to prepare for examination by TEM. Electrons can be transmitted through smaller particles directly and larger particles can be thinned by crushing and dispersion onto a substrate or by embedding in a film followed by ion milling. Attempts at dispersion onto a thin film substrate often result in particle aggregation by van der Waals attraction. In the present work we studied 1-10 μm diameter Al2O3 spheres which were transformed from the amprphous state to the stable α phase.After the appropriate heat treatment, the spherical powders were embedded in as high a density as practicable in a hard EPON, and then microtomed into thin sections. There are several advantages to this method. Obviously, this is a rapid and convenient means to study the microstructure of serial slices. EDS, ELS, and diffraction studies are also considerably more informative. Furthermore, confidence in sampling reliability is considerably enhanced. The major negative feature is some distortion of the microstructure inherent to the microtoming operation; however, this appears to have been surprisingly small. The details of the method and some typical results follow.


Author(s):  
R. Rajesh ◽  
R. Droopad ◽  
C. H. Kuo ◽  
R. W. Carpenter ◽  
G. N. Maracas

Knowledge of material pseudodielectric functions at MBE growth temperatures is essential for achieving in-situ, real time growth control. This allows us to accurately monitor and control thicknesses of the layers during growth. Undesired effusion cell temperature fluctuations during growth can thus be compensated for in real-time by spectroscopic ellipsometry. The accuracy in determining pseudodielectric functions is increased if one does not require applying a structure model to correct for the presence of an unknown surface layer such as a native oxide. Performing these measurements in an MBE reactor on as-grown material gives us this advantage. Thus, a simple three phase model (vacuum/thin film/substrate) can be used to obtain thin film data without uncertainties arising from a surface oxide layer of unknown composition and temperature dependence.In this study, we obtain the pseudodielectric functions of MBE-grown AlAs from growth temperature (650°C) to room temperature (30°C). The profile of the wavelength-dependent function from the ellipsometry data indicated a rough surface after growth of 0.5 μm of AlAs at a substrate temperature of 600°C, which is typical for MBE-growth of GaAs.


Sign in / Sign up

Export Citation Format

Share Document