adhesion testing
Recently Published Documents


TOTAL DOCUMENTS

110
(FIVE YEARS 9)

H-INDEX

24
(FIVE YEARS 1)

Standards ◽  
2021 ◽  
Vol 1 (2) ◽  
pp. 117-133
Author(s):  
Monika Bleszynski ◽  
Edward Clark

Ice accretion is a serious problem in cold climates, causing automobile and airplane accidents, as well as severe economic losses throughout various sectors. To combat these issues, many solutions have been developed, such as de-icing materials, which can delay or prevent the adhesion of ice to a surface through chemical, temperature, or physical means. To effectively assess the properties of a de-icing material, ice adhesion testing must be conducted, of which there are numerous types, each with their own characteristics. Unfortunately, the same material, tested with different methods, may provide very different ice adhesion values. This makes it difficult to properly characterize a material’s de-icing properties and compare values across the literature. In this review, we identified the main ice adhesion testing methods and compared ice adhesion values for a particular material with different testing methods. We then discussed some of the main issues with current ice testing methods and identified some of the main factors that may affect ice adhesion values, namely ice quality and the use of a mold, which may significantly affect the final ice adhesion results. Finally, we proposed a new, simple standard testing method, in an attempt to eliminate some of the issues with current ice testing methods.


2020 ◽  
Vol 8 (2) ◽  
Author(s):  
Billy Permadi ◽  
Asroni Asroni ◽  
Eko Budiyanto

Electroplating process is a coating process where the deposition of a thin metal coating occurs on a coated surface using direct current and constant voltage. The process of finishing metal products uses Nickel as a coating that serves to improve the properties of the metal so that it resists corrosion and attach importance to the appearance of the metal surface. The metal coating process is carried out by electroplating technique with Nickel which occurs as an anode, and electrolyte uses in this process contained Nickel Sulphate. This study aims to determine the effect of distance variations and electrical pressure on layer thickness and adhesive strength. Anode Material coated with ST-41 Steel Plate with dimensions of 70 x 25 x 20 mm. While the cathode uses nickel (Ni) with dimensions of 10 x 20 x 20 mm. Cathode distance variations with anodes 5, 10, and 15 cm and electrical voltage variations of 3.5 Volts, 5 Volts, and 7.5 Volts. Bath time of 40 minutes and adhesion testing using the Posi Test AT-M Adhesion Tester. The results obtained from this study are the distance of the cathode with the best anode found at a distance of 5 cm and a voltage of 7.5 volts with a thickness of 0.0160 mm. Then the best voltage is at 7.5 Volts with a sticky strength value of> 21.53 MPa.Keywords: Electroplating, Nickel, Anode, Cathode, ST-41 Steel.


Author(s):  
Vipulbhai Mandli ◽  
Shailesh T. Prajapati

The purpose of this research was to prepare and evaluate monolithic drug-in-adhesive type patches of Rasagiline Mesylate (RM) containing penetration enhancer and having seven day wear property. Preformulation studies like solubility in permeation enhancers, compatibility study, transmission study, uptake study and crystallization study of Rasagiline Mesylate in various pressure sensitive adhesive polymers were performed. Transdermal system was prepared by solvent casting method. The effects of various permeation enhancers (Propylene Glycol, Oleic Acid, Isopropyl Palmitate, and lauryl lactate) on the ex-vivo transcutaneous absorption of Rasagiline Mesylate through human cadaver skin were evaluated by modified Franz diffusion cell system. Ex-vivo transcutaneous absorption of prepared transdermal patch was performed using different concentration of Lauryl lactate (3%, 5%, and 7%). In-vitro Adhesion testing (Peel, tack shear etc.) was performed on different dry GSM (Grams per Square Meter) of patch like 80GSM, 100 GSM and 150 GSM. The final transdermal patches were tested for appearance, weight of matrix, thickness, % assay of drug content, in-vitro adhesion testing, cold flow study and ex-vivo skin permeation studies. Based on crystallization study and adhesion testing, Durotak-4098 (14% drug concentration) was selected as pressure sensitive adhesive. Patch containing Lauryl lactate showed highest cumulative permeation compared to other permeation enhancers. The patch containing 5% laurel lactate showed greater transdermal flux (2.36 µg/cm2 /hr). Patch with 150 dry GSM showing promising adhesion properties. Backing film Scotchpak 9723 and release liner Saint Gobain 8310 was selected based on transmission and uptake study of Rasagiline Mesylate. Stability study indicates that developed formulation remains stable. In conclusion, the present research confirms the practicability of developing Rasagiline Mesylate transdermal system.


2019 ◽  
pp. 1-18
Author(s):  
Clayton Neff ◽  
Edwin Elston ◽  
Amanda Schrand ◽  
Nathan Crane

2019 ◽  
Vol 12 (4) ◽  
pp. 1769
Author(s):  
P Ramya ◽  
B Padmapriya ◽  
S Poornachandra ◽  
M Arumugaraja
Keyword(s):  

DYNA ◽  
2018 ◽  
Vol 85 (207) ◽  
pp. 221-226 ◽  
Author(s):  
Jhonattan De la Roche-Yepes ◽  
Juan Manuel Gonzalez Carmona ◽  
Elizabeth Restrepo-Parra ◽  
Hector Sanchez-Sthepa

Titanium-doped tungsten disulfide thin films (WS2-Ti) were deposited using a DC magnetron co-sputtering on AISI 304 stainless steel and silicon substrates. Different Ti cathode power densities between 0 and 1.25 W/cm2 were used for coating deposition. Energy-dispersive spectroscopy evidenced an increase in Ti percentage at the expense of W, as well as a sulfur deficiency. Raman spectroscopy was used to identify bands corresponding to W-S for undoped WS2. As the material was doped, changes in crystalline structure caused W-S main bands to separate. Scratch adhesion testing showed that Ti percentage increased along with the critical load (Lc). Furthermore, adhesive failure type changed from plastic to elastic. Finally, corrosion resistance analysis using electrochemical impedance spectroscopy (EIS) showed that, at high Ti concentrations, corrosion resistance was enhanced as Ti facilitates coating densification and generates a protective layer.


Sign in / Sign up

Export Citation Format

Share Document