Power Quality in Distribution Networks with Distributed Photovoltaic Generation

Author(s):  
Adel M Sharaf ◽  
Khaled Mohamed Abo-Al-Ez

In a deregulated electric service environment, an effective electric transmission and distribution networks are vital to the competitive environment of reliable electric service. Power quality (PQ) is an item of steadily increasing concern in power transmission and distribution. The traditional approach to overcoming capacity and quality limitations in power transmission and distribution in many cases is the addition of new transmission and/or generating capacity. This, however, may not be practicable or desirable in the real case, for many of reasons. From technical, economical and environmental points of view, there are two important - and most of the time combined - alternatives for building new transmission or distribution networks to enhance the transmission system capacity, and power quality: the Flexible alternating current transmission devices and controllers, and the distributed generation resources near the load centers. The connection of distributed generation to the distribution grid may influence the stability of the power system, i.e. angle, frequency and voltage stability. It might also have an impact on the protection selectivity, and the frequency and voltage control in the system. This paper presents a low cost FACTS based Dynamic Distribution System Compensator (DDSC) scheme for voltage stabilization and power transfer and quality enhancement of the distribution feeders connected to a dispersed wind generator, using MATLAB/ SimPower System simulation tool.


2022 ◽  
Vol 203 ◽  
pp. 107679
Author(s):  
Oscar Pinzón-Quintero ◽  
Daniel Gaviria-Ospina ◽  
Alejandro Parrado-Duque ◽  
Rusber Rodríguez-Velásquez ◽  
German Osma-Pinto

2016 ◽  
Vol 25 (06) ◽  
pp. 1650056 ◽  
Author(s):  
G. Sudha ◽  
K. R. Valluvan

Power Quality Assessment (PQA) is a critical issue both in transmission and distribution networks. Therefore, it is necessary to precisely classify the disturbances in shortest possible time to prevent the malfunction or increase of losses in the electrical equipment through appropriate remedial techniques. This paper proposes a highly accurate method of PQA through data acquisition using smart sensors, the Rogowski coils (RCs). RCs with wide band width and linear characteristics allow faithful reproduction of high-frequency (HF) signals. In the proposed method, simulated disturbance signals are applied to RC. The output signals are subjected to multilevel wavelet decomposition and then computation of the energy difference in the detailed components between the disturbance signal and the pure sinusoidal waveform is performed to design a fuzzy logic Power Quality Classifier. The classifier is tested by varying the magnitude, frequency and duration of the disturbance and found to be accurate to 98.38%. The classification accuracy depends mainly on the performance of sensors at HFs. Thus, with RCs as sensors instead of conventional instrument transformers, it is found that the precision of power quality classification is greatly improved.


2018 ◽  
Vol 91 ◽  
pp. 1205-1230 ◽  
Author(s):  
Choton K. Das ◽  
Octavian Bass ◽  
Ganesh Kothapalli ◽  
Thair S. Mahmoud ◽  
Daryoush Habibi

Sign in / Sign up

Export Citation Format

Share Document