Dynamic Compression vs. Locking Plating − Is One “Better”? A Review of Biomechanical Principles and in vitro Testing

Author(s):  
Adam H. Biedrzycki
Author(s):  
Jackie D. Zehr ◽  
Jack P. Callaghan

Abstract A mechanical goal of in vitro testing systems is to minimize differences between applied and actual forces and moments experienced by spinal units. This study quantified the joint reaction forces and reaction flexion-extension moments during dynamic compression loading imposed throughout the physiological flexion-extension range-of-motion. Constrained (fixed base) and unconstrained (floating base) testing systems were compared. Sixteen porcine spinal units were assigned to both testing groups. Following conditioning tests, specimens were dynamically loaded for 1 cycle with a 1 Hz compression waveform to a peak load of 1 kN and 2 kN while positioned in five different postures (neutral, 100% and 300% of the flexion and extension neutral zone), totalling ten trials per FSU. A six degree-of-freedom force and torque sensor was used to measure peak reaction forces and moments for each trial. Shear reaction forces were significantly greater (25.5 N - 85.7 N) when the testing system was constrained compared to unconstrained (p < 0.029). The reaction moment was influenced by posture (p = 0.037), particularly in C5C6 spinal units. In 300% extension (C5C6), the reaction moment was, on average, 9.9 Nm greater than the applied moment in both testing systems and differed from all other postures (p < 0.001). The reaction moment error was, on average, 0.45 Nm at all other postures. In conclusion, these findings demonstrate that comparable reaction moments can be achieved with unconstrained systems, but without inducing appreciable shear reaction forces.


1967 ◽  
Vol 17 (03/04) ◽  
pp. 405-411
Author(s):  
M Hume

SummaryUrokinase and urokinase-activated plasmin have been given to the dog and rabbit. A thrombolytic state has been induced. Purified urokinase has induced lysis of the experimental radioactive blood clot embolus in the circulation. Demonstration of effectiveness in this animal experiment is hampered by inhibition of the agents in the circulation to a degree much greater than was noted in previous experiments with streptokinase. In vitro testing indicates that under proper conditions urokinase will be an effective agent in the treatment of human thromboembolism.


2019 ◽  
Vol 93 ◽  
pp. 25-35 ◽  
Author(s):  
Nicholas N. Ashton ◽  
Gina Allyn ◽  
Scott T. Porter ◽  
Travis J. Haussener ◽  
Paul R. Sebahar ◽  
...  

1984 ◽  
Vol 11 (5) ◽  
pp. 279-282 ◽  
Author(s):  
Robert L. Rietschel ◽  
Ronald Muggins ◽  
Nicole Levy ◽  
Pat M. Pruitt

Sign in / Sign up

Export Citation Format

Share Document