joint reaction forces
Recently Published Documents


TOTAL DOCUMENTS

139
(FIVE YEARS 34)

H-INDEX

21
(FIVE YEARS 3)

Author(s):  
Jackie D. Zehr ◽  
Jack P. Callaghan

Abstract A mechanical goal of in vitro testing systems is to minimize differences between applied and actual forces and moments experienced by spinal units. This study quantified the joint reaction forces and reaction flexion-extension moments during dynamic compression loading imposed throughout the physiological flexion-extension range-of-motion. Constrained (fixed base) and unconstrained (floating base) testing systems were compared. Sixteen porcine spinal units were assigned to both testing groups. Following conditioning tests, specimens were dynamically loaded for 1 cycle with a 1 Hz compression waveform to a peak load of 1 kN and 2 kN while positioned in five different postures (neutral, 100% and 300% of the flexion and extension neutral zone), totalling ten trials per FSU. A six degree-of-freedom force and torque sensor was used to measure peak reaction forces and moments for each trial. Shear reaction forces were significantly greater (25.5 N - 85.7 N) when the testing system was constrained compared to unconstrained (p < 0.029). The reaction moment was influenced by posture (p = 0.037), particularly in C5C6 spinal units. In 300% extension (C5C6), the reaction moment was, on average, 9.9 Nm greater than the applied moment in both testing systems and differed from all other postures (p < 0.001). The reaction moment error was, on average, 0.45 Nm at all other postures. In conclusion, these findings demonstrate that comparable reaction moments can be achieved with unconstrained systems, but without inducing appreciable shear reaction forces.


2021 ◽  
Vol 2 (12) ◽  
pp. 1057-1061
Author(s):  
Sufian S. Ahmad ◽  
Luise Weinrich ◽  
Gregor M. Giebel ◽  
Myriam R. Beyer ◽  
Ulrich Stöckle ◽  
...  

Aims The aim of this study was to determine the association between knee alignment and the vertical orientation of the femoral neck in relation to the floor. This could be clinically important because changes of femoral neck orientation might alter chondral joint contact zones and joint reaction forces, potentially inducing problems like pain in pre-existing chondral degeneration. Further, the femoral neck orientation influences the ischiofemoral space and a small ischiofemoral distance can lead to impingement. We hypothesized that a valgus knee alignment is associated with a more vertical orientation of the femoral neck in standing position, compared to a varus knee. We further hypothesized that realignment surgery around the knee alters the vertical orientation of the femoral neck. Methods Long-leg standing radiographs of patients undergoing realignment surgery around the knee were used. The hip-knee-ankle angle (HKA) and the vertical orientation of the femoral neck in relation to the floor were measured, prior to surgery and after osteotomy-site-union. Linear regression was performed to determine the influence of knee alignment on the vertical orientation of the femoral neck. Results The cohort included 147 patients who underwent knee realignment-surgery. The mean age was 51.5 years (SD 11). Overall, 106 patients underwent a valgisation-osteotomy, while 41 underwent varisation osteotomy. There was a significant association between the orientation of the knee and the coronal neck-orientation. In the varus group, the median orientation of the femoral neck was 46.5° (interquartile range (IQR) 49.7° to 50.0°), while in the valgus group, the orientation was 52.0° (IQR 46.5° to 56.7°; p < 0.001). Linear regression analysis revealed that HKA demonstrated a direct influence on the coronal neck-orientation ( β = 0.5 (95% confidence interval (CI) 0.2 to 0.7); p = 0.002). Linear regression also showed that realignment surgery was associated with a significant influence on the change in the coronal femoral neck orientation ( β = 5.6 (95% CI 1.5 to 9.8); p = 0.008). Conclusion Varus or valgus knee alignment is associated with either a more horizontal or a more vertical femoral neck orientation in standing position, respectively. Subsequently, osteotomies around the knee alter the vertical orientation of the femoral neck. These aspects are of importance when planning osteotomies around the knee in order to appreciate the effects on the adjacent hip joint. The concept may be of even more relevance in dysplastic hips. Cite this article: Bone Jt Open 2021;2(12):1057–1061.


Micromachines ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1430
Author(s):  
Elliott C. Leinauer ◽  
Hyunmin M. Kim ◽  
Jae W. Kwon

This work presents a polymer-based tactile capacitive sensor capable of measuring joint reaction forces of reverse total shoulder arthroplasty (RTSA). The capacitive sensor contains a polydimethylsiloxane (PDMS) dielectric layer with an array of electrodes. The sensor was designed in such a way that four components of glenohumeral contact forces can be quantified to help ensure proper soft tissue tensioning during the procedure. Fabricated using soft lithography, the sensor has a loading time of approximately 400 ms when a 14.13 kPa load is applied and has a sensitivity of 1.24 × 10−3 pF/kPa at a load of 1649 kPa. A replica RTSA prothesis was 3D printed, and the sensor was mounted inside the humeral cap. Four static right shoulder positions were tested, and the results provided an intuitive graphical description of the pressure distribution across four quadrants of the glenohumeral joint contact surface. It may help clinicians choose a right implant size and offset that best fit a patient’s anatomy and reduce postoperative biomechanical complications such as dislocation and stress fracture of the scapula.


Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7066
Author(s):  
Leonid Maslov ◽  
Alexey Borovkov ◽  
Irina Maslova ◽  
Dmitriy Soloviev ◽  
Mikhail Zhmaylo ◽  
...  

The aim of this paper is to investigate and compare the stress distribution of a reconstructed pelvis under different screw forces in a typical walking pattern. Computer-aided design models of the pelvic bones and sacrum made based on computer tomography images and individually designed implants are the basis for creating finite element models, which are imported into ABAQUS software. The screws provide compression loading and bring the implant and pelvic bones together. The sacrum is fixed at the level of the L5 vertebrae. The variants of strength analyses are carried out with four different screw pretension forces. The loads equivalent to the hip joint reaction forces arising during moderate walking are applied to reference points based on the centres of the acetabulum. According to the results of the performed analyses, the optimal and critical values of screw forces are estimated for the current model. The highest stresses among all the models occurred in the screws and implant. As soon as the screw force increases up to the ultimate value, the bone tissue might be locally destroyed. The results prove that the developed implant design with optimal screw pretension forces should have good biomechanical characteristics.


Author(s):  
John Rasmussen ◽  
Kristoffer Iversen ◽  
Bjørn Keller Engelund ◽  
Sten Rasmussen

Fusion of spinal vertebrae can be accomplished by different surgical approaches. We investigated Traditional Open Spine Surgery (TOSS) versus Minimally Invasive Spine Surgery (MISS). While TOSS sacrifices spine muscles originating or inserting on the affected vertebrae, MISS seeks to minimize the approach-related morbidity and preserve the tendon attachments of the muscles in the area. We captured 3-D motions of the full body of one healthy subject performing a variety of 10 kg box lifting operations representing activities-of-daily-living that are likely to challenge the spine biomechanically. The motion data were transferred to a full-body biomechanical model with a detailed representation of the biomechanics of the spine, and simulations of the internal spine loads and muscle forces were performed under a baseline configuration and muscle configurations typical for TOSS respectively MISS for the cases of L3/L4, L4/L5, L5/S1, L4/S1 and L3/L5 fusions. The computational model was then used to investigate the biomechanical differences between surgeries. The simulations revealed that joint reaction forces are more affected by both surgical approaches for lateral lifting motions than for sagittal plane motions, and there are indications that individuals with fused joints, regardless of the approach, should be particularly careful with asymmetrical lifts. The MISS and TOSS approaches shift the average loads of different muscle groups in different ways. TOSS generally leads to higher post-operative muscle loads than MISS in the investigated cases, but the differences are smaller than could be expected, given the differences of surgical technique.


2021 ◽  
Vol 11 (5) ◽  
pp. 20200083
Author(s):  
Rebecca W. Cook ◽  
Antonino Vazzana ◽  
Rita Sorrentino ◽  
Stefano Benazzi ◽  
Amanda L. Smith ◽  
...  

Homo floresiensis is a small-bodied hominin from Flores, Indonesia, that exhibits plesiomorphic dentognathic features, including large premolars and a robust mandible, aspects of which have been considered australopith-like. However, relative to australopith species, H. floresiensis exhibits reduced molar size and a cranium with diminutive midfacial dimensions similar to those of later Homo , suggesting a reduction in the frequency of forceful biting behaviours. Our study uses finite-element analysis to examine the feeding biomechanics of the H. floresiensis cranium. We simulate premolar (P 3 ) and molar (M 2 ) biting in a finite-element model (FEM) of the H. floresiensis holotype cranium (LB1) and compare the mechanical results with FEMs of chimpanzees, modern humans and a sample of australopiths (MH1, Sts 5, OH5). With few exceptions, strain magnitudes in LB1 resemble elevated levels observed in modern Homo . Our analysis of LB1 suggests that H. floresiensis could produce bite forces with high mechanical efficiency, but was subject to tensile jaw joint reaction forces during molar biting, which perhaps constrained maximum postcanine bite force production. The inferred feeding biomechanics of H. floresiensis closely resemble modern humans, suggesting that this pattern may have been present in the last common ancestor of Homo sapiens and H. floresiensis .


Author(s):  
Ai-Min Liu ◽  
I-Hua Chu ◽  
Hwai-Ting Lin ◽  
Jing-Min Liang ◽  
Hsiu-Tao Hsu ◽  
...  

Standing yoga poses strengthen a person’s legs and helps to achieve the goal of musculoskeletal rehabilitation, but inadequate exercise planning can cause injuries. This study investigated changes in the electromyogram and joint moments of force (JMOFs) of lower extremities during common standing yoga poses in order to explore the feasibility and possible injury risk in dealing with musculoskeletal problems. Eleven yoga instructors were recruited to execute five yoga poses (Chair, Tree, Warrior 1, 2, and 3). The results revealed significant differences in hip, knee, and ankle JMOFs and varying degrees of muscle activation among the poses. Among these poses, rectus femoris muscle activation during the Chair pose was the highest, Warrior 2 produced the highest muscle activation in the vastus lateralis of the front limb, while Warrior 1 had the highest muscle activation in the vastus medialis of the back limb. Therefore, all three poses can possibly be suggested as a therapeutic intervention for quadriceps strengthening. Warrior 1 was possibly suggested as a therapeutic intervention in order to reduce excessive lateral overload of the patella, but the possible adverse effects of Warrior 2 with the highest knee adductor JMOF in the back limb could raise joint reaction forces across the medial condyles. In single-leg balance postures, Warrior 3 had unique training effects on the hamstring, and is therefore suggested as a part of hamstring rehabilitation exercises. The Tree pose induced low lower-extremity JMOFs and a low level of thigh muscle activations when it was performed by senior instructors with excellent balance control; however, for yoga beginners with insufficient stability, it will be a useful training mode for strengthening the muscles that help to keep one upright. This study quantified the physical demands of yoga poses using biomechanical data and elucidated the structures and principles underlying each yoga movement. This is crucial for yoga practitioners.


2021 ◽  
Vol 11 (15) ◽  
pp. 6860
Author(s):  
Andrea Biscarini

The author has derived the closed-form dynamic equations for a planar musculoskeletal chain composed of a generic number n of rigid links connected by ideal revolute joints. Single-joint and multi-joint muscles have been modeled as linear force actuators that can span from one joint to all the joints of the chain. The generic shape and size of each individual link of the chain accounts for different alignments among the center of mass of the link, the centers of rotation of the joints that articulate the link with its neighbors, and the points of application of the muscle forces and the possible contact external resistances acting on the link. The joint torque and the reaction force acting on each joint have been determined in closed-form by analytical quantification of the unique contribution of each individual kinematic and kinetic variable: (1) force of each single-joint or multi-joint muscle spanning or non-spanning the joint; (2) weight and contact external resistances acting on each individual link of the chain; (3) position, angular velocity, and angular acceleration of each individual link of the chain. The analytical results derived in this study can be applied to multilink musculoskeletal chains with deep/superficial and segmental/global muscles.


2021 ◽  
Vol 92 ◽  
pp. 103345
Author(s):  
Sebastian Skals ◽  
Rúni Bláfoss ◽  
Lars Louis Andersen ◽  
Michael Skipper Andersen ◽  
Mark de Zee

Sign in / Sign up

Export Citation Format

Share Document