acrylate resin
Recently Published Documents


TOTAL DOCUMENTS

122
(FIVE YEARS 25)

H-INDEX

17
(FIVE YEARS 4)

Nanomaterials ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 55
Author(s):  
Shichao Song ◽  
Yijie Li ◽  
Zhuofan Yao ◽  
Jie Li ◽  
Xiangping Li ◽  
...  

The advanced direct laser printing of functional devices with tunable effective index is a key research topic in numerous emerging fields, especially in micro-/nano-optics, nanophotonics, and electronics. Photosensitized nanocomposites, consisting of high-index materials (e.g., titanium dioxide, TiO2) embedded in polymer matrix, are emerging as attractive platforms for advanced additive manufacturing. Unfortunately, in the currently applied techniques, the preparation of optically functionalized structures based on these photosensitized nanocomposites is still hampered by many issues like hydrolysis reaction, high-temperature calcinations, and, especially, the complexity of experimental procedures. In this study, we demonstrate a feasible strategy for fabricating micro-/nanostructures with a flexibly manipulated effective refractive index by incorporating TiO2 nanoparticles in the matrix of acrylate resin, i.e., TiO2-based photosensitized nanocomposites. It was found that the effective refractive index of nanocomposite can be easily tuned by altering the concentration of titanium dioxide nanoparticles in the monomer matrix. For TiO2 nanoparticle concentrations up to 30 wt%, the refractive index can be increased over 11.3% (i.e., altering from 1.50 of pure monomer to 1.67 at 532 nm). Based on such a photosensitized nanocomposite, the grating structures defined by femtosecond laser nanoprinting can offer vivid colors, ranging from crimson to magenta, as observed in the dark-field images. The minimum printing width and printing resolution are estimated at around 70 nm and 225 nm, indicating that the proposed strategy may pave the way for the production of versatile, scalable, and functionalized opto-devices with controllable refractive indices.


Polymers ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 3333
Author(s):  
Soon Hyuk Lim ◽  
Nguyễn Hoàng Ly ◽  
Jung A. Lee ◽  
Ji Eun Kim ◽  
Se-Woong La ◽  
...  

This work introduces a facile geometry-controlled method for the fabrication of embossed and engraved polymeric moth-eye-inspired nanostructures in imprinting molds using anodic aluminum oxide (AAO) templates, resulting in a novel anti-reflective transparent coating. The moth-eye nanostructures are prepared directly on the surface of a flexible polyethylene terephthalate (PET) substrate. As a prerequisite procedure, a UV-curable polyurethane acrylate resin is spun on the PET. The shape of the moth-eye nanostructures can then be adjusted by controlling the size and shape of the nanopores in the AAO templates. Both embossed and concaved polymer moth-eye nanostructures were successfully mounted on a PET substrate. Embossed polymer replica molds were prepared using the AAO master templates in combination with an imprinting process. As revealed by field-emission electron microscope (FE-SEM) images, conical nanopatterns in the AAO template with a diameter of ~90 nm and a depth of ~100 nm, create a homogeneous embossed morphology in the polymer moth-eye nanostructure. The polymeric molds with the depths of 300 and 500 nm revealed the amalgamated structures in their apexes. In addition, a dip-imprinting process of the polymeric layers was implemented to yield a concaved mold by assembly on the surface of the 100 nm embossed polymer mold substrate. Considering that the embossed structures may be crumbled due to their protuberant shapes, the concaved geometries can have an advantage of stability in a certain application concerning physical degradation along with a higher transmission by ~2%, despite somewhat nonuniform structure. The experimental and theoretical results of this study indicate that this polymer layer has the potential for use in anti-reflective coating applications in transparent films.


Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4544
Author(s):  
Osman Konuray ◽  
Arnau Sola ◽  
Jordi Bonada ◽  
Agnieszka Tercjak ◽  
Albert Fabregat-Sanjuan ◽  
...  

Versatile acrylate–epoxy hybrid formulations are becoming widespread in photo/thermal dual-processing scenarios, especially in 3D printing applications. Usually, parts are printed in a stereolithography or digital light processing (DLP) 3D printer, after which a thermal treatment would bestow the final material with superior mechanical properties. We report the successful formulation of such a hybrid system, consisting of a commercial 3D printing acrylate resin modified by an epoxy–anhydride mixture. In the final polymeric network, we observed segregation of an epoxy-rich phase as nano-domains, similar to what was observed in a previous work. However, in the current work, we show the effectiveness of a coupling agent added to the formulation to mitigate this segregation for when such phase separation is undesired. The hybrid materials showed significant improvement of Young’s modulus over the neat acrylate. Once the flexible, partially-cured material was printed with a minimal number of layers, it could be molded into a complex form and thermally cured. Temporary shapes were readily programmable on this final material, with easy shape recovery under mild temperatures. Inspired by repairable 3D printed materials described recently, we manufactured a large object by printing its two halves, and then joined them covalently at the thermal cure stage with an apparently seamless union.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Yonggui Wang ◽  
Zeng Zhang ◽  
Jianfeng Wang ◽  
Rui Sang ◽  
Weigang Zhang

Purpose A kind of the Z-6020/E-44 modified waterborne hydroxyl acrylate resin (Z-WEA) and its application in volatile organic compound-free waterborne coatings were prepared. Design/methodology/approach The Z-6020/E-44 modified waterborne hydroxyl acrylate resin (Z-WEA) was obtained dropwise by adding a mixed solution of methyl methacrylate, n-butyl acrylate, hydroxyethyl methacrylate, acrylic acid and an initiator into a pre-prepared solution of isopropyl alcohol and E-44 and by semi-continuous solution polymerization, and this chain was further extended with organosiloxane (Z-6020) through graft copolymer, which was then neutralized with organic base and dispersed with water, with waterborne amino resin curing agent to form a film, and the properties were tested. Findings The results showed that when the dosage of initiator was 2.5% accounts for the total acrylic monomer, the hydroxyl content was 10%; the dosage of E-44 was 16%; the dosage of Z-6020 was 6%; the mass ratio of hard and soft monomer was 2.0:1; the neutralization was 100%; Z-6020/E-44 modified waterborne hydroxyl acrylate resin (Z-WEA) had excellent dispersion performance in water and storage stability; water absorption of cured film was 7.8%; pencil hardness reached 5H; adhesive force was 1 level; and the film was uniform and endowed with remarkable heat resistance, high gloss and good fullness. Practical implications This paper established a method to synthesize Z-6020/E-44 modified waterborne hydroxyl acrylate resin (Z-WEA) with green surfactants that can be used in the coatings, adhesives, finishing agents and so on. Originality/value This paper provides a method of preparing Z-6020/E-44 modified waterborne hydroxyl acrylate resin (Z-WEA) and with waterborne amino resin curing agent to form a film, and the film is uniform and endowed with remarkable heat resistance, high gloss and good fullness and meets the requirements of high-grade paint.


RSC Advances ◽  
2021 ◽  
Vol 11 (28) ◽  
pp. 17399-17407
Author(s):  
Jian Hao ◽  
Liyan Yu ◽  
Yongmei Cui ◽  
Wen Wan ◽  
Junyi Huang

The cladding made from the polyfluorosilicone acrylate resin provided a covering of the microstructure of the shallow surface layer of old bricks, which makes the treated brick wall waterproof, moisture-proof, mildew-proof and weather resistant.


Polymers ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2178
Author(s):  
Jun Hyup Lee

To attain the narrow bezel characteristic of information displays, functional sealing composite materials should possess high adhesion strength and water barrier performance due to their narrow line widths. In this study, highly adhesive UV/heat dual-curable epoxy–acrylate composites with outstanding water-resistant performance have been proposed using photoreactive organic–inorganic hybrid nanoparticles that can react with an acrylate resin, creating a crosslinked nanoparticle network within the sealing composite. The hybrid nanoparticles consisted of reactive methacrylate groups as a shell and an inorganic core of silica or aluminum oxide, and were facilely synthesized through sol–gel reaction and chemisorption process. The curing characteristics, adhesive strength, and moisture permeability of the proposed sealing composite have been compared to those of a conventional epoxy–acrylate composite containing inorganic silica particles. The composites including hybrid nanoparticles exhibited high UV and heat curing ratios owing to the numerous methacrylate groups on the nanoparticle surface and high compatibility with organic resins. Moreover, the proposed sealing composite showed high adhesion strength and extremely low water permeability due to the creation of densely photocrosslinked network with matrix resins. In addition, the sealing composite exhibited excellent narrow dispensing width as well as relatively low viscosity, suggesting the potential application in narrow bezel display.


Sign in / Sign up

Export Citation Format

Share Document