Google Earth Engine Advancing Urban Land Change Science

2021 ◽  
pp. 175-188
Author(s):  
Le Wang ◽  
Dameng Yin ◽  
Jinyan Tian ◽  
Ying Lu
2020 ◽  
Vol 248 ◽  
pp. 112002 ◽  
Author(s):  
Le Wang ◽  
Chunyuan Diao ◽  
George Xian ◽  
Dameng Yin ◽  
Ying Lu ◽  
...  

2019 ◽  
Vol 11 (7) ◽  
pp. 752 ◽  
Author(s):  
Zhongchang Sun ◽  
Ru Xu ◽  
Wenjie Du ◽  
Lei Wang ◽  
Dengsheng Lu

Accurate and timely urban land mapping is fundamental to supporting large area environmental and socio-economic research. Most of the available large-area urban land products are limited to a spatial resolution of 30 m. The fusion of optical and synthetic aperture radar (SAR) data for large-area high-resolution urban land mapping has not yet been widely explored. In this study, we propose a fast and effective urban land extraction method using ascending/descending orbits of Sentinel-1A SAR data and Sentinel-2 MSI (MultiSpectral Instrument, Level 1C) optical data acquired from 1 January 2015 to 30 June 2016. Potential urban land (PUL) was identified first through logical operations on yearly mean and standard deviation composites from a time series of ascending/descending orbits of SAR data. A Yearly Normalized Difference Vegetation Index (NDVI) maximum and modified Normalized Difference Water Index (MNDWI) mean composite were generated from Sentinel-2 imagery. The slope image derived from SRTM DEM data was used to mask mountain pixels and reduce the false positives in SAR data over these regions. We applied a region-specific threshold on PUL to extract the target urban land (TUL) and a global threshold on the MNDWI mean, and slope image to extract water bodies and high-slope regions. A majority filter with a three by three window was applied on previously extracted results and the main processing was carried out on the Google Earth Engine (GEE) platform. China was chosen as the testing region to validate the accuracy and robustness of our proposed method through 224,000 validation points randomly selected from high-resolution Google Earth imagery. Additionally, a total of 735 blocks with a size of 900 × 900 m were randomly selected and used to compare our product’s accuracy with the global human settlement layer (GHSL, 2014), GlobeLand30 (2010), and Liu (2015) products. Our method demonstrated the effectiveness of using a fusion of optical and SAR data for large area urban land extraction especially in areas where optical data fail to distinguish urban land from spectrally similar objects. Results show that the average overall, producer’s and user’s accuracies are 88.03%, 94.50% and 82.22%, respectively.


2018 ◽  
Vol 209 ◽  
pp. 227-239 ◽  
Author(s):  
Xiaoping Liu ◽  
Guohua Hu ◽  
Yimin Chen ◽  
Xia Li ◽  
Xiaocong Xu ◽  
...  

2021 ◽  
Vol 13 (7) ◽  
pp. 1338
Author(s):  
Eduilson Carneiro ◽  
Wilza Lopes ◽  
Giovana Espindola

Teresina-Timon conurbation (TTC) area is an example of urban agglomeration, situated in the semiarid environment of the northeast region of Brazil, which has shown an accelerated process of urban development over the last four decades (1985–2019). In this study, we developed a semi-automatic urban land mapping framework at the Google Earth Engine (GEE) platform to (a) evaluate spatiotemporal sprawl of the TTC area (1985–2018); and (b) quantify current urban fabric structures of TTC area (2019). The main empirical results demonstrate that the use of the Landsat historical dataset is a suitable option for generating consistent urban land maps across the years in semiarid environments. Teresina and Timon expanded, respectively, from 70.34 km2 and 12.20 km2 in 1985 to 159.02 km2 and 30.68 km2 in 2018, increasing annually at 3.05% and 3.69% averaged rate, showing an underlying tendency of continuous growth, and magnitude similar to Asian cities. The results of the urban fabric (UF) structures mapping demonstrates a high complexity of the urbanized surfaces, characterized by irregular shapes and variability of urban coverage. In 2019, the TTC metropolitan area was covered by urban land use classes as ceramic roofs, other types of roofs, and impervious surface, in the proportions of 28.02%, 11.97%, and 5.67%, respectively.


2020 ◽  
Vol 2 ◽  
Author(s):  
Paulo Arévalo ◽  
Eric L. Bullock ◽  
Curtis E. Woodcock ◽  
Pontus Olofsson

Land cover has been designated by the Global Climate Observing System (GCOS) as an Essential Climate Variable due to its integral role in many climate and environmental processes. Land cover and change affect regional precipitation patterns, surface energy balance, the carbon cycle and biodiversity. Accurate information on land cover and change is essential for climate change mitigation programs such as UN-REDD+. Still, uncertainties related to land change are large, in part due to the use of traditional land cover and change mapping techniques that use one or a few remotely sensed images, preventing a comprehensive analysis of ecosystem change processes. The opening of the Landsat archive and the initiation of the Copernicus Program have enabled analyses based on time series data, allowing the scientific community to explore global land cover dynamics in ways that were previously limited by data availability. One such method is the Continuous Change Detection and Classification algorithm (CCDC), which uses all available Landsat data to model temporal-spectral features that include seasonality, trends, and spectral variability. Until recently, the CCDC algorithm was restricted to academic environments due to computational requirements and complexity, preventing its use by local practitioners. The situation has changed with the recent implementation of CCDC in the Google Earth Engine, which enables analyses at global scales. What is still missing are tools that allow users to explore, analyze and process CCDC outputs in a simplified way. In this paper, we present a suite of free tools that facilitate interaction with CCDC outputs, including: (1) time series viewers of CCDC-generated time segments; (2) a spatial data viewer to explore CCDC model coefficients and derivatives, and visualize change information; (3) tools to create land cover and land cover change maps from CCDC outputs; (4) a tool for unbiased area estimation of key climate-related variables like deforestation extent; and (5) an API for accessing the functionality underlying these tools. We illustrate the usage of these tools at different locations with examples that explore Landsat time series and CCDC coefficients, and a land cover change mapping example in the Southeastern USA that includes area and accuracy estimates.


2019 ◽  
Vol 37 ◽  
pp. 30-43
Author(s):  
Luciana Viana Neves ◽  
Leandro Andrei Beser de Deus ◽  
Antonio Carlos da Silva Oscar Júnior ◽  
Manoel Do Couto Fernandes

O número de eventos de desastres naturais tem aumentado ao longo do tempo no território brasileiro e no mundo inteiro. No contexto brasileiro, há expressiva ocorrência de eventos de natureza hidrológica a exemplo das inundações, deslizamentos e secas. O presente artigo relaciona as mudanças de uso e cobertura do solo no município de Duque de Caxias, rotineiramente afetado por eventos de inundação, entre 2007 e 2016 (período dentro da vigência do segundo plano diretor municipal), com o resultado do mapeamento das áreas suscetíveis à inundação, realizado pelo CPRM (2013). As mudanças foram inferidas através do modelo Land Change Modeler (LCM), e os insumos de entrada correspondem à mapas de uso e cobertura do solo classificados supervisionadamente com o uso do algoritmo CART, na plataforma Google Earth Engine, através de imagens Landsat 5, sensor TM, bandas 4 (infravermelho próximo), 3 (vermelho) e 2 (verde), e Landsat 8, sensor OLI, Bandas 5 (infravermelho próximo), 4 (vermelho) e 3 (verde), ambas com resolução de 30m x 30m. Analisou-se as classes “urbano”, “vegetação densa”, “vegetação rasteira” e “solo exposto”. Busca-se com este trabalho identificar quais classes obtiveram maiores mudanças no período de análise, se estas tendem a ocorrer em áreas classificadas como alta suscetibilidade à inundação e a probabilidade de uma classe se tornar outra em 2026 (através da matriz de transição de Markov). No intervalo de nove anos, houve mais de 40 km² de perda de vegetação densa, mais de 60 km² de perda de vegetação rasteira e quase 60 km² de expansão da área urbana. Esta última se ampliando para locais com alta suscetibilidade à inundação.


Author(s):  
Mauricio Vega-Araya

La Tierra y su biosfera están cambiando constantemente, por lo tanto, es fundamental detectar los cambios con el fin de entender su impacto en los ecosistemas terrestres. Los esquemas de monitoreo de ecosistemas han evolucionado rápidamente en las ultimas décadas. En el caso del monitoreo forestal, los métodos y herramientas que facilitan la utilización de imágenes satelitales permiten realizar este monitoreo con el cual se puede detectar donde y cuando un bosque es eliminado o afectado debido a un evento de deforestación o bien de fuego, lo anterior casi en tiempo real. Estas nuevas herramientas están disponibles para su implementación, sin embargo, ningún paı́s de la región centroamericana y el Caribe ha implementado un sistema como herramienta de decisión dentro de una estructura de gobierno central o federal debido a la ausencia de programas de transferencia de tecnologı́a o programas de capacitación de talento local. Los sensores remotos proporcionan mediciones consistentes y repetibles que permiten la captura de los efectos de muchos procesos que causan el cambio, incluyendo, por ejemplo, incendios, ataques de insectos, agentes de cambio naturales y antropogénicas como por ejemplo, la deforestación, la urbanización, la agricultura, etc. Las series temporales de imágenes de satélite proporcionan maneras para detectar y vigilar cambios en el tiempo y en el espacio, esto consistentemente durante los últimos 30 años a nivel mundial. Los incendios forestales afectan el proceso de sucesión del bosque, no obstante, es muy limitada la existencia de estudios locales que relacionen el efecto de los incendios forestales con las diferencias en la información espectral a partir de sensoramiento remoto. En el presente estudio se plantea y propone la utilización y aprovechamiento de lo que se ha denominado grandes datos, especialmente con el advenimiento muchas plataformas de sensores remotos como Landsat, MODIS y recientemente Sentinel, para identificar cuál es el efecto de los incendios forestales en la sucesión y sus elementos perturbadores, como por ejemplo, la presencia de lianas. Se procesaron las series temporales se usó la plataforma digital Google Earth Engine, que permitió la selección y reducción de la información espacial de los ı́ndices de vegetación en tendencia, estacionalidad y residuos. Se analizó la respuesta de estos ı́ndices en sitios con diferente afectación por incendios forestales. Con estos índices se pretende desarrollar modelos de clasificación de series espaciales de tiempo de los ı́ndices y poder ası́ comprender los cambios en el tiempo y el espacio de los ecosistemas afectados por incendios forestales. Preliminarmente, se encontró una relación entre la incidencia de los incendios forestales y el fenómeno del Niño-Oscilación del Sur para el índice de vegetación denominado índice de área foliar. Además, la evidencia indica que el índice normalizado de vegetación si presenta diferencias respecto a los sitios que tienen un historial de fuegos diferente. El establecer esta relación implica estudiar también los regı́menes de precipitación y temperatura. El descomponer las series de tiempo facilitó la correlación con otras series de tiempo, permitiendo establecer las bases de un monitoreo y a su vez, relacionar las índices de vegetación y su variación con otros elementos climáticos, como por ejemplo, el efecto ENOS.


Sign in / Sign up

Export Citation Format

Share Document