CLASSIFICATION OF CONCEPT DRIFT IN EVOLVING DATA STREAM

Author(s):  
Mashail Althabiti ◽  
Manal Abdullah
2012 ◽  
Vol 235 ◽  
pp. 9-14
Author(s):  
Chun Hua Ju ◽  
Li Li Mao

Data stream mining has been applied in many domains, but the concept drifts of data streams bring great obstacles to data mining. Current researches about classification algorithm for streaming data with concept drift have achieved many successes, while they pay little attention to the iterancy of data streams, namely, the situation of the historical concept reappears. For this characteristic, this paper puts forward that it utilizes the classifier model of the historical concepts or high similarity concepts through calculating the concept similarity to classify and predict. In this way, we don’t need training any more. Meanwhile, it reduces the cost of update model, speeds up the classification of the rate and improves the prediction efficiency.


2021 ◽  
Author(s):  
Ben Halstead ◽  
Yun Sing Koh ◽  
Patricia Riddle ◽  
Russel Pears ◽  
Mykola Pechenizkiy ◽  
...  

2021 ◽  
Author(s):  
Yuan Zhong ◽  
Hongyu Yang ◽  
Yanci Zhang ◽  
Ping Li ◽  
Cheng Ren

Author(s):  
S. Priya ◽  
R. Annie Uthra

AbstractIn present times, data science become popular to support and improve decision-making process. Due to the accessibility of a wide application perspective of data streaming, class imbalance and concept drifting become crucial learning problems. The advent of deep learning (DL) models finds useful for the classification of concept drift in data streaming applications. This paper presents an effective class imbalance with concept drift detection (CIDD) using Adadelta optimizer-based deep neural networks (ADODNN), named CIDD-ADODNN model for the classification of highly imbalanced streaming data. The presented model involves four processes namely preprocessing, class imbalance handling, concept drift detection, and classification. The proposed model uses adaptive synthetic (ADASYN) technique for handling class imbalance data, which utilizes a weighted distribution for diverse minority class examples based on the level of difficulty in learning. Next, a drift detection technique called adaptive sliding window (ADWIN) is employed to detect the existence of the concept drift. Besides, ADODNN model is utilized for the classification processes. For increasing the classifier performance of the DNN model, ADO-based hyperparameter tuning process takes place to determine the optimal parameters of the DNN model. The performance of the presented model is evaluated using three streaming datasets namely intrusion detection (NSL KDDCup) dataset, Spam dataset, and Chess dataset. A detailed comparative results analysis takes place and the simulation results verified the superior performance of the presented model by obtaining a maximum accuracy of 0.9592, 0.9320, and 0.7646 on the applied KDDCup, Spam, and Chess dataset, respectively.


2021 ◽  
Vol 1955 (1) ◽  
pp. 012048
Author(s):  
Chunhua Yang ◽  
Cong Wang ◽  
Xiao Hu ◽  
Niankang You ◽  
Xuguang Yang

2010 ◽  
Vol 30 (6) ◽  
pp. 1539-1542
Author(s):  
Cheng-liang WANG ◽  
Xu PANG ◽  
Zhi-jian LU ◽  
Chang-yin LUO

Sign in / Sign up

Export Citation Format

Share Document