Assessment of Fretting‐Wear Damage in Nuclear and Process Equipment

2021 ◽  
pp. 373-395
Author(s):  
Michel J. Pettigrew ◽  
Metin Yetisir ◽  
Nigel J. Fisher ◽  
Bruce A. W. Smith ◽  
Victor P. Janzen
Author(s):  
Michel J. Pettigrew ◽  
Metin Yetisir ◽  
Nigel J. Fisher ◽  
Bruce A. W. Smith ◽  
Colette E. Taylor ◽  
...  

The problem of fretting-wear damage between a vibrating structure and its supports is discussed in this paper. Typical components of concern are piping systems and pipe-supports, multispan heat exchanger tubes and tube supports, and nuclear fuel bundles and fuel channels. Fretting-wear damage is related to the dynamic interaction between a structure and its supports. This interaction is conveniently formulated in terms of a parameter called “work rate” to predict fretting-wear damage. Work rate is simply the integral of contact force over sliding distance per unit time. Fretting-wear damage may be investigated from an energy point of view. It is essentially the mechanical energy or power dissipated through contact forces and sliding that causes fretting-wear damage. Development of a simple formulation that relates tube vibration response and fretting-wear damage is reviewed in this paper. Some new practical examples and simple calculations are discussed.


Author(s):  
Michel J. Pettigrew ◽  
Metin Yetisir ◽  
Nigel J. Fisher ◽  
Colette E. Taylor ◽  
Bruce A. W. Smith

Excessive flow-induced vibration causing fretting-wear damage can seriously affect the performance of process equipment such as heat exchangers, condensers, nuclear steam generators, nuclear fuels, reactor internals, and piping systems. Fretting-wear damage generally takes place between a vibrating structure and its supports. It can be predicted with a fretting-wear coefficient obtained experimentally and a parameter called work-rate that formulates the dynamic interaction between structure and support. The work-rate is essentially the rate of mechanical energy dissipated at the support. On the other hand, the total available mechanical vibration energy in a structure is related to its mass, vibration frequency, mode shape, damping, and vibration amplitude. This leads to the development of a simplified formulation based on energy considerations to relate the vibration response of a structure to fretting-wear damage at its supports. The basic energy equations and the formulation of a simplified energy relationship to predict fretting-wear damage are outlined in this paper. The relationship is verified against experimental data for a multi-span heat exchanger tube. The energy approach is also compared to time domain calculations performed with a non-linear finite element code. The results indicate that the simple energy approach may be very useful to estimate fretting-wear damage in practical situations. Finally, the application of the method is illustrated for a typical heat exchanger tube and for nuclear fuels.


Author(s):  
S Terekhina ◽  
M Salvia ◽  
S Fouvry ◽  
G Malysheva ◽  
T Tarasova
Keyword(s):  

1995 ◽  
Vol 117 (4) ◽  
pp. 312-320 ◽  
Author(s):  
N. J. Fisher ◽  
A. B. Chow ◽  
M. K. Weckwerth

Flow-induced vibration of steam generator tubes results in fretting-wear damage due to impacting and rubbing of the tubes against their supports. This damage can be predicted by computing tube response to flow-induced excitation forces using analytical techniques, and then relating this response to resultant wear damage using experimentally derived wear coefficients. Fretting-wear of steam generator materials has been studied experimentally at Chalk River Laboratories for two decades. Tests are conducted in machines that simulate steam generator environmental conditions and tube-to-support dynamic interactions. Different tube and support materials, tube-to-support clearances, and tube support geometries have been studied. The effect of environmental conditions, such as temperature, oxygen content, pH and chemistry control additive, have been investigated as well. Early studies showed that damage was related to contact force as long as other parameters, such as geometry and motion, were held constant. Later studies have shown that damage is related to a parameter called work-rate, which combines both contact force and sliding distance. Results of short and long-term fretting-wear tests for CANDU steam generator materials at realistic environmental conditions are presented. These results demonstrate that work-rate is an appropriate correlating parameter for impact-sliding interaction.


2016 ◽  
Vol 16 (12) ◽  
pp. 12742-12748 ◽  
Author(s):  
Auezhan Amanov ◽  
Jun-Hyong Kim ◽  
Young-Sik Pyun

2014 ◽  
Vol 575 ◽  
pp. 17-21 ◽  
Author(s):  
Ahmad Afiq Pauzi ◽  
Shuib Husin

Wear is the main problem in gas turbine combustor components. The mating surfaces experience surface degradation affected by wear damage. The main mechanisms of wear occurred on combustor components could be adhesive wear, abrasive wear, and fretting wear. Wear resistant materials such as Haynes 25 (L605) and Stelitte 6 were selected to be used in reducing wear damage especially on bull horn, transition piece and flow sleeve of combustor components. The reduction of wear on combustor components can be described as the extension of combustion inspection interval of a gas turbine. It is concluded that wear on combustor components can be reduced by the applications of wear resistant materials on the components.


Materials ◽  
2018 ◽  
Vol 11 (4) ◽  
pp. 607 ◽  
Author(s):  
Zhengyang Li ◽  
Zhenbing Cai ◽  
Yanping Wu ◽  
Xiandong Meng ◽  
Dongxu Zhang

Author(s):  
Greg D. Morandin ◽  
Richard G. Sauve´

Successful life management of steam generators requires an ongoing operational assessment plan to monitor and address all potential degradation mechanisms. A degradation mechanism of concern is tube fretting as a result of flow-induced vibration. Flow induced vibration predictive methods routinely used for design purposes are based on deterministic nonlinear structural analysis techniques. In previous work, the authors have proposed the application of probabilistic techniques to better understand and assess the risk associated with operating power generating stations that have aging re-circulating steam generators. Probabilistic methods are better suited to address the variability of the parameters in operating steam generators, e.g., flow regime, support clearances, manufacturing tolerances, tube to support interactions, and material properties. In this work, an application of a Monte Carlo simulation to predict the propensity for fretting wear in an operating re-circulation steam generator is described. Tube wear damage is evaluated under steady-state conditions using two wear damage correlation models based on the tube-to-support impact force time histories and work rates obtained from nonlinear flow induced vibration analyses. Review of the tube motion in the supports and the impact/sliding criterion shows that significant tube damage at the U-bend supports is a result of impact wear. The results of this work provide the upper bound predictions of wear damage in the steam generators. The EPRI wear correlations for sliding wear and impact wear indicate good agreement with the observed damage and, given the preponderance of wear sites subject to impact, should form the basis of future predictions.


Author(s):  
Pablo R. Rubiolo

The effect of the diverse parameters affecting the fretting-wear performance of nuclear fuel rods is investigated by performing Monte Carlo simulations with a fuel rod vibration model. The study is focused on the analysis of the effect of the grid parameters, including the cell clearance and the grid/support misalignments, on the support preload forces distribution, the rod dynamic response and the overall wear damage. In the present approach, the fuel rod and grids are modeled as a beam constrained at a finite number of axial positions and a non-linear vibration model is used to predict the rod motion and the wear rates. The results of the analysis suggest that an important fraction of the variability of the assembly wear damage distribution can be explained by the local variations of the rod-support conditions.


Sign in / Sign up

Export Citation Format

Share Document