Monte Carlo Simulation of Fretting Wear Performance of Fuel Rods

Author(s):  
Pablo R. Rubiolo

The effect of the diverse parameters affecting the fretting-wear performance of nuclear fuel rods is investigated by performing Monte Carlo simulations with a fuel rod vibration model. The study is focused on the analysis of the effect of the grid parameters, including the cell clearance and the grid/support misalignments, on the support preload forces distribution, the rod dynamic response and the overall wear damage. In the present approach, the fuel rod and grids are modeled as a beam constrained at a finite number of axial positions and a non-linear vibration model is used to predict the rod motion and the wear rates. The results of the analysis suggest that an important fraction of the variability of the assembly wear damage distribution can be explained by the local variations of the rod-support conditions.

Metals ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 304 ◽  
Author(s):  
Hongling Qin ◽  
Runzhou Xu ◽  
Pixiang Lan ◽  
Jian Wang ◽  
Wenlong Lu

Powder Bed Fusion (PBF) is an additive manufacturing technology used to produce metal-based materials. PBF materials have a unique microstructure as a result from repeated and sharp heating/cooling cycles. Many researches have been carried out on relations between processing parameters of the PBF technology, obtained microstructures and mechanical properties. However, there are few studies on the tribological properties of PBF materials at various contact conditions. This article describes previous and recent studies related to the friction performance. This is a critical aspect if PBF materials are applied to friction pair components. This paper discusses wear rates and wear mechanisms of PBF materials under dry friction, boundary lubrication and micro-motion conditions. PBF materials have higher hardness due to fine grains. PBF materials have a higher wear resistance than traditional materials due to their solid solution strengthening. In addition, hard particles on the surface of PBF components can effectively reduce wear. The reasonable combination of process parameters can effectively improve the density of parts and thus further improve the wear resistance. This review paper summarized the wear behavior of PBF materials, the wear mechanism of metal materials from dry friction to different lubrication conditions, and the wear behavior under fretting wear. This will help to control the processing parameters and material powder composition of parts, so as to achieve the required material properties of parts and further improve the wear performance.


Author(s):  
S. Benhamadouche ◽  
P. Moussou ◽  
C. Le Maitre

Turbulent-induced vibrations of fuel assemblies in PWR power plants is a potential cause of deformation and of fretting wear damage. Because of the complexity of a 17 × 17 rod assembly with a length exceeding four meters, the prediction of its vibrations is still a challenging task as regards computer simulation. The Large Eddy Simulation (LES) technique provides the instantaneous pressure and velocity fields inside the fluid as well as the shear stress and the pressure along the walls. EDF inhouse open source CFD tool Code_Saturne is used in the present work with a 8 million cells grid to compute the flow along four sub-channels all around one fuel rod by taking into account only one mixing grid. The computations are carried out on 1024 processors of a BlueGene/L supercomputer. Hence, the overall turbulent excitation upon one single rod is estimated numerically, taking into account the specific influence of the deflectors. As regards the structure, using the forces provided by the CFD computation, a linear model of the rod based on Euler beam theory and simplified boundary conditions is proposed. The first natural modes of the structure are hence obtained, and the modal forces are estimated using the standard techniques of modal projection and joint acceptance. Estimations of the vibration amplitude of rod induced by the local flow are finally obtained, using simplified expressions of the added mass and of the damping coefficient. The amplitudes are significant for the first mode essentially, and reach a value of the order of the μm, with a maximum around 6 μm.


Author(s):  
Ladislav Pecinka ◽  
Jaroslav Svoboda ◽  
Vladimír Zeman

Fretting wear is a particular type of wear that is expected to occur in fuel assemblies of pressurized water cooled nuclear reactors. Fretting damage of fuel rods may cause Nuclear Power Plant (NPP) operations problems and are very expensive to repair. As utilities and fuel vendors adopt higher utilization of uranium and improved thermal margins plants, burned fuel rods will be loaded at core the periphery as part of the margin mechanisms. Pressurized Water Reactors (PWRs) have experienced fuel rods fretting wear failures due to flow induced vibrations. This study describes basic results of theoretical analysis and describes experiments to predict thinning of the Zr cladding wall thickness performed.


Author(s):  
Qi Huan-huan ◽  
Feng Zhi-peng ◽  
Xiong Fu-rui ◽  
Jiang Nai-bin ◽  
Huang Qian ◽  
...  

Fuel rods are subjected to both axial and lateral flow in the reactor core. In this study, we present a study on the flow induced vibration (FIV) and fretting wear of fuel rod with failed clamping at grids. First, according to the flow distribution around a type of pressurized water reactor (PWR) fuel rod, the power spectral density (PSD) is obtained to characterize the turbulence excitation. Next, by combining the correlation PSD test parameters, the mean square value of the vibration displacement of each rod mode is found, and then the wear depth of dimple position is calculated based on the ARCHARD wear formula. The clamping of fuel rod at various grids may fail due to inaccurate manufacturing, fuel transportation and in-core irradiation. The absence of clamping force would significantly influence the rod mode and thereby changes its FIV responses. Simulation results show that the failure of the leaf spring has negligible effect on the rod natural frequency whereas the dimple failure near the location with larger FIV amplitude has a much significant effect. The lateral flow velocities at the inlet and outlet of the core are larger. For the fully clamped fuel rod, the response amplitude of turbulent excitation at the bottom and top of the fuel rod is larger. This is even more obvious with a failed dimple at these locations. Comparatively, the effect of dimple support failure in the middle is less influential. The influence of dimple support failure over the rod wear depth depicts basically the same trend as on the maximum FIV amplitude. In addition to the FIV amplitude, wear depth is also related to rod natural frequency. By examining the multiplication of amplitude and frequency at the top and bottom grid, we found that the dimple failure has greater impact at the top grid.


Author(s):  
Pablo R. Rubiolo ◽  
Michael Y. Young

An analysis of the factors affecting the fretting-wear risk of fuel assemblies operated in Pressurized Water Reactors (PWR) is presented. In this work the effect of rod-to-grid gap size, spring relaxation, assembly grids misalignments, rod structural damping and stiffness, and friction coefficients are investigated by performing Monte Carlo simulations with a non-linear vibration model of the fuel rod. The goal of the study is to identify key factors that have to be included in the assessment of the fretting-wear performance of core fuel assemblies.


Author(s):  
R. Ahmed ◽  
O. Ali ◽  
C. C. Berndt ◽  
A. Fardan

AbstractThe global thermal spray coatings market was valued at USD 10.1 billion in 2019 and is expected to grow at a compound annual growth rate of 3.9% from 2020 to 2027. Carbide coatings form an essential segment of this market and provide cost-effective and environmental friendly tribological solutions for applications in aerospace, industrial gas turbine, automotive, printing, oil and gas, steel, and pulp and paper industries. Almost 23% of the world’s total energy consumption originates from tribological contacts. Thermal spray WC-Co coatings provide excellent wear resistance for industrial applications in sliding and rolling contacts. Some of these applications in abrasive, sliding and erosive conditions include sink rolls in zinc pots, conveyor screws, pump housings, impeller shafts, aircraft flap tracks, cam followers and expansion joints. These coatings are considered as a replacement of the hazardous chrome plating for tribological applications. The microstructure of thermal spray coatings is however complex, and the wear mechanisms and wear rates vary significantly when compared to cemented WC-Co carbides or vapour deposition WC coatings. This paper provides an expert review of the tribological considerations that dictate the sliding wear performance of thermal spray WC-Co coatings. Structure–property relationships and failure modes are discussed to grasp the design aspects of WC-Co coatings for tribological applications. Recent developments of suspension sprayed nanocomposite coatings are compared with conventional coatings in terms of performance and failure mechanisms. The dependency of coating microstructure, binder material, carbide size, fracture toughness, post-treatment and hardness on sliding wear performance and test methodology is discussed. Semiempirical mathematical models of wear rate related to the influence of tribological test conditions and coating characteristics are analysed for sliding contacts. Finally, advances for numerical modelling of sliding wear rate are discussed.


2019 ◽  
Vol 5 (3) ◽  
Author(s):  
Marcin Kopeć ◽  
Martina Malá

The ultrasonic (UT) measurements have a long history of utilization in the industry, also in the nuclear field. As the UT transducers are developing with the technology in their accuracy and radiation resistance, they could serve as a reliable tool for measurements of small but sensitive changes for the nuclear fuel assembly (FA) internals as the fuel rods are. The fuel rod bow is a phenomenon that may bring advanced problems as neglected or overseen. The quantification of this issue state and its probable progress may help to prevent the safety-related problems of nuclear reactors to occur—the excessive rod bow could, in the worst scenario, result in cladding disruption and then the release of actinides or even fuel particles to the coolant medium. Research Centre Rez has developed a tool, which could serve as a complementary system for standard postirradiation inspection programs for nuclear fuel assemblies. The system works in a contactless mode and reveals a 0.1 mm precision of measurements in both parallel (toward the probe) and perpendicular (sideways against the probe) directions.


Author(s):  
John W. Lucek

Rolling-contact fatigue test methods were used to measure the wear performance of several silicon nitride materials. Sintered, hot pressed and hot isostatically pressed materials exhibited wear rates ranging over three orders of magnitude. Hot isostatically pressed materials had the lowest wear rates. Despite the disparity in wear performance, all materials tested had useful rolling-contact fatigue lives compared to steel. Fatigue life estimates, failure modes, and rolling wear performance for theses ceramics are compared to M-50 steel. This work highlights the rapid contact stress reductions that occur due to conformal wear in rolling-contact fatigue testing. Candidate bearing materials with unacceptably high wear rates may exhibit useful fatigue lives. Rolling contact bearing materials must possess useful wear and fatigue resistance. Proper performance screening of candidate bearing materials must describe the failure mode, wear rate, and the fatigue life. Guidelines for fatigue testing methods are proposed.


Sign in / Sign up

Export Citation Format

Share Document