wear rates
Recently Published Documents


TOTAL DOCUMENTS

841
(FIVE YEARS 213)

H-INDEX

43
(FIVE YEARS 5)

Lubricants ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 5
Author(s):  
Federica Amenta ◽  
Giovanni Bolelli ◽  
Stefano De Lorenzis ◽  
Alessandro Bertarini ◽  
Luca Lusvarghi

In this study, two polymeric materials were tested in a dry rotating “pin-on-disc” configuration against differently coated surfaces, to evaluate their tribological response under conditions, such as those of rotary lip seals, and to identify the wear mechanism of each coupling. A PTFE based material, reinforced with glass fibers and a solid lubricant, and unreinforced polyketone were tested against a chromium oxide coating deposited by plasma thermal spraying, a CrN/NbN superlattice coating deposited by Physical Vapor Deposition (PVD), and a Diamond-Like Carbon (DLC) coating obtained through a hybrid PVD/PECVD (Plasma-Enhanced Chemical Vapor Deposition) process. The PTFE matrix composite offers better overall performance, in terms of specific wear rates and friction coefficients than polyketone. Although the tribological behavior of this material is generally worse than that of the PTFE matrix composite, it can be used without reinforcing fillers. Our analysis demonstrates the importance of transfer-film formation on the counter-surfaces, which can prevent further wear of the polymer if it adheres well to the counterpart. However, the tribofilm has opposing effects on the friction coefficient for the two materials: its formation leads to lower friction for PTFE and higher friction for polyketone.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Lucian Capitanu ◽  
Liliana-Laura Badita ◽  
Constantin Tiganesteanu ◽  
Virgil Florescu

Purpose The purpose of this paper is to study the roughness effect on the fixation of taper junction components and surfaces wear in terms of taper surface design. The roughness of the femoral heads’ taper and of the femoral stems’ trunnions can influence the fretting wear of the taper junction. Design/methodology/approach It was analysed whether a microgrooved taper surface of the femoral stem trunnion improves the fixation and reduces the wear rate at the taper junction of the hip prosthesis. Two models have studied: a femoral head with a smooth tapered surface combined with a microgrooved stem trunnion and a femoral head with a smooth tapered surface combined with a trunnion that had a smooth surface of the tapered. To compare the wear evolution between these two models, a computerised finite element model of the wear was used. Findings The results obtained after analysis carried out during millions of loading cycles showed that the depth of the linear wear and the total material loss were higher for the femoral heads joined with microgrooved trunnions. The main conclusion of this paper is that the smooth surfaces of the taper and of the trunnions will ensure a better fixation at the taper junction, and therefore, will reduce the volumetric wear rates. Originality/value A higher fixation of the taper junction will reduce the total hip prosthesis failure and, finally, it will improve the quality and durability of modular hip prostheses.


Lubricants ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 3
Author(s):  
Hamidreza Ghandvar ◽  
Mostafa Abbas Jabbar ◽  
Abdollah Bahador ◽  
Tuty Asma Abu Bakar ◽  
Nor Akmal Fadil ◽  
...  

In current study; the effect of various Gadolinium (Gd) additions on the microstructure and sliding wear behaviour of Al-15%Mg2Si composite before and after the hot extrusion process was examined. Optical microscopy (OM), scanning electron microscopy (SEM) equipped with EDX facility and X-ray diffraction (XRD) were used to characterize the microstructure. The results showed that with addition of 1.0 wt.% Gd to Al-15%Mg2Si composite, the primary Mg2Si particles size reduced from 44 µm to 23 µm and its morphology altered from dendritic to polygonal shape. Further refinement of primary Mg2Si particles was achieved after conducting hot extrusion which resulted in a decrease in its size to 19 µm with a transfer to near-spherical morphology. The Vickers hardness value increased from 55.6 HV in the as-cast and unmodified composite to 72.9 HV in the extruded 1.0% Gd modified composite. The wear test results revealed that composites treated with Gd possess higher wear resistance in comparison with those of without Gd. The highest wear resistance obtained with the lowest wear rates of 0.19 mm3/km and 0.14 mm3/km in the Al-15%Mg2Si-1.0% Gd before and after the hot extrusion, respectively. The high wear resistance of extruded Gd-modified Al-15%Mg2Si composite is due to the refinement of primary Mg2Si particles with uniform distribution in the composite matrix along with fragmentation of Gd intermetallic compounds.


Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 88
Author(s):  
Roxana Muntean ◽  
Dragoș-Toader Pascal ◽  
Norbert Kazamer ◽  
Gabriela Mărginean ◽  
Viorel-Aurel Șerban

The present study aimed to investigate the tribological behavior of high-temperature vacuum-brazed WC-Co-NiP functional coatings deposited on 16MnCr5 case hardening steel. Dry sliding wear resistance was evaluated using a non-conformal ball-on-disk arrangement, at room temperature against 100Cr6 and WC-Co static partners, respectively. Morphological, microstructural, and chemical composition analyses showed a complex, phased structure composed of tungsten carbide, nickel, and hard cobalt-based η-structure. In the testing conditions, the coefficient of friction against 100Cr6 and WC-Co counterparts entered a steady-state value after approximately 1000 m and 400 m, respectively. The wear track analysis revealed phenomena of particles trapped between the sliding bodies, as well as gradual removal of asperities. The calculations of the wear rates proved that the values were strongly influenced by properties of the sliding system, such as crystal structure, stress discontinuities, hardness, and material homogeneity.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Zhu Weixin ◽  
Kong Dejun

Abstract NiMo-5%TiC, NiMo-15%TiC, and NiMo-25%TiC coatings were prepared on GCr15 steel by laser cladding (LC). The microstructure and the phases of the obtained coatings were analyzed using ultra-depth-of-field microscopy (UDFM) and X-ray diffraction (XRD), respectively. A ball-on-disk wear test was used to analyze the friction-wear performance of the substrate and the NiMo-TiC coatings under grease-lubrication condition. The results show that the grain shape of NiMo-TiC coatings is dendritic. The wear resistance of NiMo-TiC coatings is improved by the addition of TiC, and the depths of the worn tracks on the substrate and on the NiMo-5%TiC, NiMo-15%TiC, and NiMo-25%TiC coatings are 4.183 μm, 2.164 μm, 1.882 μm, and 1.246 μm, respectively, and the corresponding wear rates are 72.25 μm3/s/N, 32.00 μm3/s/N, 18.10 μm3/s/N, and 7.99 μm3/s/N, respectively; this shows that the NiMo-25%TiC coating has the highest wear resistance among the three kinds of coatings. The wear mechanism of NiMo-TiC coatings is abrasive wear, and the addition of TiC plays a role in resisting wear during the friction process.


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7895
Author(s):  
Johannes L. Otto ◽  
Ivan Fedotov ◽  
Milena Penyaz ◽  
Thorge Schaum ◽  
Anke Kalenborn ◽  
...  

Alumina-based ceramic hip endoprosthesis heads have excellent tribological properties, such as low wear rates. However, stress peaks can occur at the point of contact with the prosthesis stem, increasing the probability of fracture. This risk should be minimized, especially for younger and active patients. Metal elevations at the stem taper after revision surgery without removal of a well-fixed stem are also known to increase the risk of fracture. A solution that also eliminates the need for an adapter sleeve could be a fixed titanium insert in the ceramic ball head, which would be suitable as a damping element to reduce the occurrence of stress peaks. A viable method for producing such a permanent titanium–ceramic joint is brazing. Therefore, a brazing method was developed for coaxial samples, and two modifications were made to the ceramic surface to braze a joint that could withstand high cyclic loading. This cyclic loading was applied in multiple amplitude tests in a self-developed test setup, followed by fractographic studies. Computed tomography and microstructural analyses—such as energy dispersive X-ray spectroscopy—were also used to characterize the process–structure–property relationships. It was found that the cyclic loading capacity can be significantly increased by modification of the surface structure of the ceramic.


2021 ◽  
Vol 7 ◽  
Author(s):  
Daniel Toboła ◽  
Aneta Łętocha

Surface integrity is important factor for components exposed to wear, like cold working tools, which need to possess high hardness combined with high wear resistance. Surface treatments such as grinding, hard turning, and hard turning with slide burnishing have been developed for its improvement. Vancron 40 and Vanadis 8 tool steels, of different chemical composition and different types and amounts of carbides, were now investigated. Heat treatment was carried out in vacuum furnaces with gas quenching to hardness of Vancron 64 ± 1 HRC and of Vanadis 65 ± 1 HRC. 3D topography, optical and scanning electron microscopy, X-ray diffraction and ball-on-disc tribological tests against Al2O3 and 100Cr6 balls as counterparts were used to examine wear and friction. For both steels, the lowest values of dynamic frictions and wear rates against Al2O3 counterbodies were achieved after sequential process of hard turning with slide burnishing with a burnishing force of 180 N. For alumina balls, the increase of wear resistance, achieved after hard turning plus burnishing in comparison to grinding exceeds 50 and 60%, respectively for Vanadis 8 and Vancron 40 steels.


2021 ◽  
pp. 1-19
Author(s):  
Xinyu Wang ◽  
Xudong Sui ◽  
Shuaituo Zhang ◽  
Mingming Yan ◽  
Yan Lu ◽  
...  

Abstract For improving the wear resistance, thick silicon doped hydrogenated amorphous carbon (a-SiC:H) coatings were deposited on cold working tool steels by Plasma Enhanced Chemical Vapor Deposition (PECVD) technology. The increase of the acetylene (C2H2) flow rate distinctly tuned the microstructure of a-SiC:H coatings, including an increase in the coating thickness (>15 μm), a decrease in the silicon content, a greater sp2/sp3 ratio and higher degree of graphitization. The highest hardness of 19.61 GPa and the greatest critical load of 50.7 N were obtained. The coating showed low wear rates against different friction pairs and presented excellent abrasive wear resistance at high applied load and the wear rates decreased with increasing loads, which exhibited an outstanding application prospect in cold working tool steels.


2021 ◽  
Author(s):  
Matus Gajdos ◽  
Igor Kocis ◽  
Tomas Kristofic

Abstract Current drilling methods may only achieve relatively low penetration rates in hard formations found in deep wellbores. The relatively high wear rates of drill bits used in such applications can cause the overall economy of deep drilling to be non-feasible. Therefore, a step change is necessary for such formations. This paper presents update in development of the pulsed plasma drilling technology which allows controlled thermo-mechanical rock breakage efficient mainly for hard rock formations. Pulsed plasma drilling technology does not melt rock but uses very short high energy pulses with high frequency which suddenly increase rock surface temperature and, thus, disintegrate its surface. Since the process is very swift, there is not enough time for creation of melt, which is viscous, difficult to remove and may act as a prevention for further penetration. Based on extensive experimental work done on 23 rock types we identified working windows for all of them. Based on this work, there is an "overlap window" where keeping the same parameters should enable drilling through any rock type. The development team performed 1500+ various tests of pulsed plasma technology. During these tests we focused on qualitative parameters like efficiency of the process, sustainability of the process, etc. Quantitative parameters were not decisive when trying to make the process work in various operational cases. In total, we've run hundreds of testing hours of the technology. Now the team focus on quantitative parameters with the milestone of deepening the existing geothermal wellbores of other entities in 2023 to demonstrate the PLASMABIT technology at great depths. The system of this technology is composed of three main parts: PLASMABIT tool (Bottom Hole Assembly - BHA)Transfer line delivering fluid and power into PLASMABIT BHASurface equipment including rig, fluid and waste management, etc. PLASMABIT BHA which is the major innovation is composed of the following modules which are under development within dedicated development programme: Pulse plasma drilling head disintegrating rockFluid and power distribution moduleControl and electronics moduleLogging moduleTwo tractoring modules securing movement and anchoringActive and passive cooling modules maintaining temperature of BHATransfer line connector For the commercial application we intend to combine conventional drilling technology with plasma in the following way: Conventional technology would be used for initial hundreds/thousands of feet to overcome sedimentary/soft rock formations where it achieves competitive Rate of Penetration (ROP). Then, in deeper/hotter/harder formations we intend to apply plasma technology where it is much more efficient than conventional technology. Based on this, we intend to use hybrid rig combining rotary drilling and coiled tubing operations.


Sign in / Sign up

Export Citation Format

Share Document